期刊文献+
共找到1,847篇文章
< 1 2 93 >
每页显示 20 50 100
Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features 被引量:1
1
作者 Asifa Mehmood Qureshi Naif Al Mudawi +2 位作者 Mohammed Alonazi Samia Allaoua Chelloug Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第3期3683-3701,共19页
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit... Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved. 展开更多
关键词 Unmanned aerial Vehicles(UAV) aerial images DATASET object detection object tracking data elimination template matching blob detection SIFT VAID
下载PDF
Robust and Discriminative Feature Learning via Mutual Information Maximization for Object Detection in Aerial Images
2
作者 Xu Sun Yinhui Yu Qing Cheng 《Computers, Materials & Continua》 SCIE EI 2024年第9期4149-4171,共23页
Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity an... Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity and intraclass variability of small objects,and UAV-specific nuisances such as uncontrolledweather conditions.Unlike previous approaches focusing on high-level semantic information,we report the importance of underlying features to improve detection accuracy and robustness fromthe information-theoretic perspective.Specifically,we propose a robust and discriminative feature learning approach through mutual information maximization(RD-MIM),which can be integrated into numerous object detection methods for aerial images.Firstly,we present the rank sample mining method to reduce underlying feature differences between the natural image domain and the aerial image domain.Then,we design a momentum contrast learning strategy to make object features similar to the same category and dissimilar to different categories.Finally,we construct a transformer-based global attention mechanism to boost object location semantics by leveraging the high interrelation of different receptive fields.We conduct extensive experiments on the VisDrone and Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)datasets to prove the effectiveness of the proposed method.The experimental results show that our approach brings considerable robustness gains to basic detectors and advanced detection methods,achieving relative growth rates of 51.0%and 39.4%in corruption robustness,respectively.Our code is available at https://github.com/cq100/RD-MIM(accessed on 2 August 2024). 展开更多
关键词 aerial images object detection mutual information contrast learning attention mechanism
下载PDF
A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography
3
作者 Usman Khan Muhammad Khalid Khan +4 位作者 Muhammad Ayub Latif Muhammad Naveed Muhammad Mansoor Alam Salman A.Khan Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第3期2967-3000,共34页
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma... Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements. 展开更多
关键词 Machine learning deep learning unmanned aerial vehicles multi-spectral images image recognition object detection hyperspectral images aerial photography
下载PDF
Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis
4
作者 Ajmeria Rahul Gundu Lokesh +2 位作者 Siddhartha Goswami R.N.Ponnalagu Radhika Sudha 《Water Science and Engineering》 EI CAS CSCD 2024年第1期62-71,共10页
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu... Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring. 展开更多
关键词 Algal bloom image processing Texture analysis Histogram analysis Unmanned aerial vehicles
下载PDF
Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images
5
作者 Ying Li Guanghong Gong +1 位作者 Dan Wang Ni Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2237-2265,共29页
There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning met... There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning methods,which can locate and identify different objects,but boundary identifications are not accurate enough.Both of them cannot generate entire segmentation information.In order to obtain accurate edge detection and semantic information,an Adaptive Boundary and Semantic Composite Segmentation method(ABSCS)is proposed.This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances.It includes adaptively dividing and modifying the aerial images with the proposed principles and methods,using the deep learning method to semantic segment and preprocess the small divided pieces,using three traditional methods to segment and preprocess original-size aerial images,adaptively selecting traditional results tomodify the boundaries of individual objects in deep learning results,and combining the results of different objects.Individual object semantic segmentation experiments are conducted by using the AeroScapes dataset,and their results are analyzed qualitatively and quantitatively.The experimental results demonstrate that the proposed method can achieve more promising object boundaries than the original deep learning method.This work also demonstrates the advantages of the proposed method in applications of point cloud semantic segmentation and image inpainting. 展开更多
关键词 Semantic segmentation aerial images composite method traditional image processing deep learning
下载PDF
Rice Bacterial Infection Detection Using Ensemble Technique on Unmanned Aerial Vehicles Images
6
作者 Sathit Prasomphan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期991-1007,共17页
Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which ... Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which could have been incorrect.Plant inspection can determine which plants reflect the quantity of green light and near-infrared using infrared light,both visible and eye using a drone.The goal of this study was to create algorithms for assessing bacterial infections in rice using images from unmanned aerial vehicles(UAVs)with an ensemble classification technique.Convolution neural networks in unmanned aerial vehi-cles image were used.To convey this interest,the rice’s health and bacterial infec-tion inside the photo were detected.The project entailed using pictures to identify bacterial illnesses in rice.The shape and distinct characteristics of each infection were observed.Rice symptoms were defined using machine learning and image processing techniques.Two steps of a convolution neural network based on an image from a UAV were used in this study to determine whether this area will be affected by bacteria.The proposed algorithms can be utilized to classify the types of rice deceases with an accuracy rate of 89.84 percent. 展开更多
关键词 Bacterial infection detection adaptive deep learning unmanned aerial vehicles image retrieval
下载PDF
Tree species classification using deep learning and RGB optical images obtained by an unmanned aerial vehicle 被引量:7
7
作者 Chen Zhang Kai Xia +2 位作者 Hailin Feng Yinhui Yang Xiaochen Du 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第5期1879-1888,共10页
The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aer... The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images. 展开更多
关键词 Urban forest Unmanned aerial vehicle(UAV) Convolutional neural network Tree species classification RGB optical images
下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:3
8
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 aerial images Object detection Feature pyramid networks Multi-scale feature fusion Swarm UAVs
下载PDF
Multi-temporal NDVI analysis using UAV images of tree crowns in a northern Mexican pine-oak forest
9
作者 JoséLuis Gallardo-Salazar Marcela Rosas-Chavoya +4 位作者 Marín Pompa-García Pablito Marcelo López-Serrano Emily García-Montiel Arnulfo Meléndez-Soto Sergio Iván Jiménez-Jiménez 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1855-1867,共13页
The use of unmanned aerial vehicles(UAV)for forest monitoring has grown significantly in recent years,providing information with high spatial resolution and temporal versatility.UAV with multispectral sensors allow th... The use of unmanned aerial vehicles(UAV)for forest monitoring has grown significantly in recent years,providing information with high spatial resolution and temporal versatility.UAV with multispectral sensors allow the use of indexes such as the normalized difference vegetation index(NDVI),which determines the vigor,physiological stress and photo synthetic activity of vegetation.This study aimed to analyze the spectral responses and variations of NDVI in tree crowns,as well as their correlation with climatic factors over the course of one year.The study area encompassed a 1.6-ha site in Durango,Mexico,where Pinus cembroides,Pinus engelmannii,and Quercus grisea coexist.Multispectral images were acquired with UAV and information on meteorological variables was obtained from NASA/POWER database.An ANOVA explored possible differences in NDVI among the three species.Pearson correlation was performed to identify the linear relationship between NDVI and meteorological variables.Significant differences in NDVI values were found at the genus level(Pinus and Quercus),possibly related to the physiological features of the species and their phenology.Quercus grisea had the lowest NDVI values throughout the year which may be attributed to its sensitivity to relative humidity and temperatures.Although the use of UAV with a multispectral sensor for NDVI monitoring allowed genera differentiation,in more complex forest analyses hyperspectral and LiDAR sensors should be integrated,as well other vegetation indexes be considered. 展开更多
关键词 Multispectral images Normalized diff erence Vegetation index PHENOLOGY Unmanned aerial vehicles Multitemporal analysis
下载PDF
Geographic,Geometrical and Semantic Reconstruction of Urban Scene from High Resolution Oblique Aerial Images 被引量:2
10
作者 Xiaofeng Sun Shuhan Shen +2 位作者 Hainan Cui Lihua Hu Zhanyi Hu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期118-130,共13页
An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stage... An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained. 展开更多
关键词 OBLIQUE aerial image point cloud SEMANTIC LABELING urban RECONSTRUCTION
下载PDF
Computational Intelligence Driven Secure Unmanned Aerial Vehicle Image Classification in Smart City Environment
11
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman Walid El-Shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3127-3144,共18页
Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid ... Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid solutions.Besides,unmanned aerial vehicles(UAV)developed a hot research topic in the smart city environment.Despite the benefits of UAVs,security remains a major challenging issue.In addition,deep learning(DL)enabled image classification is useful for several applications such as land cover classification,smart buildings,etc.This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification(MDLS-UAVIC)model in a smart city environment.Themajor purpose of the MDLS-UAVIC algorithm is to securely encrypt the images and classify them into distinct class labels.The proposedMDLS-UAVIC model follows a two-stage process:encryption and image classification.The encryption technique for image encryption effectively encrypts the UAV images.Next,the image classification process involves anXception-based deep convolutional neural network for the feature extraction process.Finally,shuffled shepherd optimization(SSO)with a recurrent neural network(RNN)model is applied for UAV image classification,showing the novelty of the work.The experimental validation of the MDLS-UAVIC approach is tested utilizing a benchmark dataset,and the outcomes are examined in various measures.It achieved a high accuracy of 98%. 展开更多
关键词 Computational intelligence unmanned aerial vehicles deep learning metaheuristics smart city image encryption image classification
下载PDF
CHANGE DETECTION FROM AERIAL IMAGES ACQUIRED IN DIFFERENT DURATIONS 被引量:2
12
作者 Zhang Jianqing Zhang Zuxun +1 位作者 Fang Zhen Fan Hong 《Geo-Spatial Information Science》 1999年第1期16-20,共5页
Because of quick development of cities, the update of urban GIS data is very important. Change detection is the base of automatic or semi-automatic data update. One way of change detections in urban area is based on o... Because of quick development of cities, the update of urban GIS data is very important. Change detection is the base of automatic or semi-automatic data update. One way of change detections in urban area is based on old and new aerial images acquired in different durations. The corresponding theory and experiments are introduced and analyzed in this paper. The main procedure includes four stages. The new and old images have to be registered firstly. Then image matching, based on the maximum correlation coefficient, is performed between registered images after the low contrast areas have been removed. The regions with low matching quality are extracted as candidate changed areas. Thirdly, the Gaussian-Laplacian operator is used to detect edges in candidate changed areas on both the registered images, and the straight lines are detected by Hough transformation. Finally, the changed houses and roads can be detected on the basis of straight line matching in candidate changed areas between registered images. Some experimental results show that the method introduced in this paper is effective. 展开更多
关键词 change detection aerial images URBAN
下载PDF
Archimedes Optimization with Deep Learning Based Aerial Image Classification for Cybersecurity Enabled UAV Networks
13
作者 Faris Kateb Mahmoud Ragab 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2171-2185,共15页
The recent adoption of satellite technologies,unmanned aerial vehicles(UAVs)and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality.But,security concerns w... The recent adoption of satellite technologies,unmanned aerial vehicles(UAVs)and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality.But,security concerns with drones were increasing as drone nodes have been striking targets for cyberattacks because of immensely weak inbuilt and growing poor security volumes.This study presents an Archimedes Optimization with Deep Learning based Aerial Image Classification and Intrusion Detection(AODL-AICID)technique in secure UAV networks.The presented AODLAICID technique concentrates on two major processes:image classification and intrusion detection.For aerial image classification,the AODL-AICID technique encompasses MobileNetv2 feature extraction,Archimedes Optimization Algorithm(AOA)based hyperparameter optimizer,and backpropagation neural network(BPNN)based classifier.In addition,the AODLAICID technique employs a stacked bi-directional long short-term memory(SBLSTM)model to accomplish intrusion detection for cybersecurity in UAV networks.At the final stage,the Nadam optimizer is utilized for parameter tuning of the SBLSTM approach.The experimental validation of the AODLAICID technique is tested and the obtained values reported the improved performance of the AODL-AICID technique over other models. 展开更多
关键词 aerial image classification remote sensing intrusion detection CYBERSECURITY deep learning
下载PDF
Gamma Correction for Brightness Preservation in Natural Images
14
作者 Navleen S Rekhi Jagroop S Sidhu Amit Arora 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2791-2807,共17页
Due to improper acquisition settings and other noise artifacts,the image degraded to yield poor mean preservation in brightness.The simplest way to improve the preservation is the implementation of histogram equalizat... Due to improper acquisition settings and other noise artifacts,the image degraded to yield poor mean preservation in brightness.The simplest way to improve the preservation is the implementation of histogram equalization.Because of over-enhancement,it failed to preserve the mean brightness and produce the poor quality of the image.This paper proposes a multi-scale decomposi-tion for brightness preservation using gamma correction.After transformation to hue,saturation and intensity(HSI)channel,the 2D-discrete wavelet transform decomposed the intensity component into low and high-pass coefficients.At the next phase,gamma correction is used by auto-tuning the scale value.The scale is the modified constant value used in the logarithmic function.Further,the scale value is optimized to obtain better visual quality in the image.The optimized value is the weighted distribution of standard deviation-mean of low pass coefficients.Finally,the experimental result is estimated in terms of quality assessment measures used as absolute mean brightness error,the measure of information detail,signal to noise ratio and patch-based contrast quality in the image.By comparison,the proposed method proved to be suitably remarkable in retaining the mean brightness and better visual quality of the image. 展开更多
关键词 Natural and aerial images wavelet transform gamma correction brightness preservation
下载PDF
Estimation of chlorophyll content in Brassica napus based on unmanned aerial vehicle images 被引量:3
15
作者 Yayi Huang Qiming Ma +10 位作者 Xiaoming Wu Hao Li Kun Xu Gaoxiang Ji Fang Qian Lixia Li Qian Huang Ying Long Xiaojun Zhang Biyun Chen Changhua Liu 《Oil Crop Science》 CSCD 2022年第3期149-155,共7页
The chlorophyll content has a direct effect on photosynthesis of crops.In order to explore a quick and convenient method for estimating the chlorophyll content of Brassica napus and facilitate efficient crop monitorin... The chlorophyll content has a direct effect on photosynthesis of crops.In order to explore a quick and convenient method for estimating the chlorophyll content of Brassica napus and facilitate efficient crop monitoring,we measured the actual value of chlorophyll with a SPAD-502 chlorophyll detector,and collected aerial images of B.napus with an unmanned aerial vehicle(UAV)carrying a RGB camera in this study.The total number of 270samples collected images were divided into regions according to the planting conditions of different B.napus varieties in the field.Then,according to the empirical formula,there were 36 colors’characteristic parameters calculated and combined.To estimate the chlorophyll content of rape,189 samples were included in the modeling set,while the other 81 samples were enrolled in the validation set for testing the accuracy of this model.After the combination of R(red),G(green)and B(blue)color channels,the results showed that the color characteristics B/(R+G),b,B/G,(G-B)/(G+B),g-b were highly connected with the measured value of chlorophyll SPAD,and the correlation coefficient between the combination based on B/(R+G)and SPAD value was 0.747.With R2=0.805,RMSE=3.343,and RE=6.84%,the regression model created using random forest had superior outcomes,according to the model comparison.This study offers a new method for quickly estimating the amount of chlorophyll in rapeseed and a workable reference for crop monitoring using the UAV platform. 展开更多
关键词 Brassica napus Unmanned aerial vehicle Red green blue images SPAD CHLOROPHYLL
下载PDF
A fast, accurate and dense feature matching algorithm for aerial images 被引量:2
16
作者 LI Ying GONG Guanghong SUN Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1128-1139,共12页
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis... Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches. 展开更多
关键词 feature matching feature screening feature fusion aerial image three-dimensional(3D)reconstruction
下载PDF
GIS/RS Based Monitoring of Coastal Region Using Aerial Photos and Satellite Images—A Case Study of Indus Delta
17
作者 Naeem Shahzad Hammad Gilani +1 位作者 Urooj Saeed Kaif Gill 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期285-285,共1页
Globally,aerial photos and satellite images have been significantly used for the estimation and change analysis of different landcover features.In this study, change analysis has been performed along coastal extent of... Globally,aerial photos and satellite images have been significantly used for the estimation and change analysis of different landcover features.In this study, change analysis has been performed along coastal extent of the selected part of Indus Delta.The study successfully deals with the temporal mapping of sea invasion/land degradation,mangroves extent and agricultural patterns.Aerial photos of 1952 展开更多
关键词 Indus DELTA MANGROVES aerial PHOTOS satellite images COASTAL line Indus RIVER
下载PDF
Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
18
作者 田婧希 金松昌 +2 位作者 张晓强 杨绍武 史殿习 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期292-304,共13页
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.... Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks. 展开更多
关键词 hyperchaotic system elliptic curve cryptosystem(ECC) 3D synchronous scrambled diffusion remote sensing image unmanned aerial vehicle(UAV)
下载PDF
An automatic method for road centerline extraction from post-earthquake aerial images
19
作者 Zhumei Liu Jingfa Zhang Xue Li 《Geodesy and Geodynamics》 2019年第1期10-16,共7页
Road vector database plays an important role in post-earthquake relief, rescue and reconstruction.However, due to data privacy policy, it is difficult for general users to obtain high-precision and complete vector dat... Road vector database plays an important role in post-earthquake relief, rescue and reconstruction.However, due to data privacy policy, it is difficult for general users to obtain high-precision and complete vector data of road network. The OpenStreetMap(OSM) project provides an open-source, global free road dataset, but there are inevitable geo-localization/projection errors, which will lead to large errors in hazard survey analysis. In this paper, we proposed a road centerline correction method using postearthquake aerial images. Under the constraint of the vector road map(OpenStreetMap), we rectified the centerline by the context feature and spectral gradient feature of post-event images automatically.The experiment implemented on 0.5 m/pixel post-event aerial images of Haiti, 2010, showed that the completeness and extraction quality of proposed method were over 90% and 80% without any manual intervention. 展开更多
关键词 OpenStreetMap MORPHOLOGICAL GRADIENT ROAD CENTERLINE extraction aerial image
下载PDF
Acquisition of Directional Parameters in Aerial Images Based on DEM Data
20
作者 LIPingxiang YUJie BIANFuling 《Geo-Spatial Information Science》 2005年第1期23-27,共5页
This paper develops a method which can be used to assist aerial navigation by determining the spatial position and posture of the aerial photographic plane. After the method, aerial images match known DEM to capture t... This paper develops a method which can be used to assist aerial navigation by determining the spatial position and posture of the aerial photographic plane. After the method, aerial images match known DEM to capture the spatial position and posture. Some aerial images and terrain data are used to testify our method. Compared with those of analytic and stereo mappers, the results by our method are correspondent to real measurements well. 展开更多
关键词 aerial navigation aerial images DEM data
下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部