In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yi...In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yilong-10 high-altitude large unmanned aerial vehicle(UAV). The Yilong-10 UAV carried a self-developed dropsonde system and a millimeter-wave cloud radar system. In addition, a solar-powered unmanned surface vessel and two drifting buoys were used. The experiment was further supported by an intelligent, reciprocating horizontal drifting radiosonde system that was deployed from the Sansha Meteorological Observing Station, with the intent of producing a stereoscopic observation over the South China Sea. Comprehensive three-dimensional observations were collected using the system from 31 July to2 August, 2020. This information was used to investigate the formation and development processes of Typhoon Sinlaku(2020). The data contain measurements of 21 oceanic and meteorological parameters acquired by the five devices, along with video footage from the UAV. The data proved very helpful in determining the actual location and intensity of Typhoon Sinlaku(2020). The experiment demonstrates the feasibility of using a high-altitude, large UAV to fill in the gaps between operational meteorological observations of marine areas and typhoons near China, and marks a milestone for the use of such data for analyzing the structure and impact of a typhoon in the South China Sea. It also demonstrates the potential for establishing operational UAV meteorological observing systems in the future, and the assimilation of such data into numerical weather prediction models.展开更多
Taking Beijing–Shanghai High-speed Railway(the section of Zhenjiangnan Station) for example,this paper applied UAV remote sensing data and GIS spatial analysis to analyze current land use types in this section,on thi...Taking Beijing–Shanghai High-speed Railway(the section of Zhenjiangnan Station) for example,this paper applied UAV remote sensing data and GIS spatial analysis to analyze current land use types in this section,on this basis used landscape pattern indices that showed high correlation with land use changes for the quantitative analysis and evaluation of ecosystem structure in the study area and also landscape pattern after the construction of high-speed railway.The results showed that UAV images performed well in the evaluation of railway landscape ecological environment,landscape structure and features represented by the selected landscape pattern indices in this paper were applicable,and capable of ensuring scientific evaluation of ecological environmental impact;the overall landscape pattern of the Zhenjiangnan Station section(Beijing–Shanghai High-speed Railway) after completion was moderate,and local ecosystem was damaged,thus scientific and reasonable ecological planning was required to design and change landscape structure.展开更多
A loss of ground directional stability can trigger a high-speed Unmanned Aerial Vehicle(UAV)to veer off the runway.In order to investigate the combined effects of the key structural and operational parameters on the U...A loss of ground directional stability can trigger a high-speed Unmanned Aerial Vehicle(UAV)to veer off the runway.In order to investigate the combined effects of the key structural and operational parameters on the UAV ground directional stability from a global perspective,a fully parameterized mathematical high-speed UAV ground nonlinear dynamic model is developed considering several nonlinear factors.The bifurcation analysis procedure of a UAV ground steering system is introduced,following which the simulation efficiency is greatly improved comparing with the time-domain simulation method.Then the numerical continuation method is employed to investigate the influence of the nose wheel steering angle and the global stability region is obtained.The bifurcation parameter plane is divided into several parts with different stability properties by the saddle nodes and the Hopf bifurcation points.We find that the UAV motion states will never cross the bifurcation curve in the nonlinear system.Also,the dual-parameter bifurcation analyses are presented to give a complete description of the possible steering performance.It is also found that BT bifurcation appears when the UAV initial rectilinear velocity and the tire frictional coefficient vary.In addition,results indicate that the influence of tire frictional coefficient has an opposite trend to the influence of initial rectilinear velocity.Overall,using bifurcation analysis method to identify the parameter regions of a UAV nonlinear ground dynamic system helps to improve the development efficiency and quality during UAV designing phase.展开更多
The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder ...The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.展开更多
基金supported by the Petrel Meteorological Observation Experiment Project of the China Meteorological Administration and the “Adaptive Improvement of New Observation Platform for Typhoon Observation (2018YFC1506401)” of the Ministry of Science and Technology。
文摘In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yilong-10 high-altitude large unmanned aerial vehicle(UAV). The Yilong-10 UAV carried a self-developed dropsonde system and a millimeter-wave cloud radar system. In addition, a solar-powered unmanned surface vessel and two drifting buoys were used. The experiment was further supported by an intelligent, reciprocating horizontal drifting radiosonde system that was deployed from the Sansha Meteorological Observing Station, with the intent of producing a stereoscopic observation over the South China Sea. Comprehensive three-dimensional observations were collected using the system from 31 July to2 August, 2020. This information was used to investigate the formation and development processes of Typhoon Sinlaku(2020). The data contain measurements of 21 oceanic and meteorological parameters acquired by the five devices, along with video footage from the UAV. The data proved very helpful in determining the actual location and intensity of Typhoon Sinlaku(2020). The experiment demonstrates the feasibility of using a high-altitude, large UAV to fill in the gaps between operational meteorological observations of marine areas and typhoons near China, and marks a milestone for the use of such data for analyzing the structure and impact of a typhoon in the South China Sea. It also demonstrates the potential for establishing operational UAV meteorological observing systems in the future, and the assimilation of such data into numerical weather prediction models.
基金Sponsored by Environmental Protection Fund of China-"123 Project"of Liaoning Environmental Scientific Research&Education(CEPF2010-123-2-10)
文摘Taking Beijing–Shanghai High-speed Railway(the section of Zhenjiangnan Station) for example,this paper applied UAV remote sensing data and GIS spatial analysis to analyze current land use types in this section,on this basis used landscape pattern indices that showed high correlation with land use changes for the quantitative analysis and evaluation of ecosystem structure in the study area and also landscape pattern after the construction of high-speed railway.The results showed that UAV images performed well in the evaluation of railway landscape ecological environment,landscape structure and features represented by the selected landscape pattern indices in this paper were applicable,and capable of ensuring scientific evaluation of ecological environmental impact;the overall landscape pattern of the Zhenjiangnan Station section(Beijing–Shanghai High-speed Railway) after completion was moderate,and local ecosystem was damaged,thus scientific and reasonable ecological planning was required to design and change landscape structure.
基金supported by the National Natural Science Foundation of China(Nos.51905264 and 12002157)the China Postdoctoral Science Foundation Funded Project,China(Nos.2019M650115,2019M661818 and 2020T130298)+3 种基金the Science&Technology Innovation Project for Overseas Scholars in Nanjing,China(No.YQR20046)the National Defense Outstanding Youth Science Foundation,China(No.2018-JCJQ-ZQ-053)the Fundamental Research Funds for the Central Universities,China(No.NF2018001)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘A loss of ground directional stability can trigger a high-speed Unmanned Aerial Vehicle(UAV)to veer off the runway.In order to investigate the combined effects of the key structural and operational parameters on the UAV ground directional stability from a global perspective,a fully parameterized mathematical high-speed UAV ground nonlinear dynamic model is developed considering several nonlinear factors.The bifurcation analysis procedure of a UAV ground steering system is introduced,following which the simulation efficiency is greatly improved comparing with the time-domain simulation method.Then the numerical continuation method is employed to investigate the influence of the nose wheel steering angle and the global stability region is obtained.The bifurcation parameter plane is divided into several parts with different stability properties by the saddle nodes and the Hopf bifurcation points.We find that the UAV motion states will never cross the bifurcation curve in the nonlinear system.Also,the dual-parameter bifurcation analyses are presented to give a complete description of the possible steering performance.It is also found that BT bifurcation appears when the UAV initial rectilinear velocity and the tire frictional coefficient vary.In addition,results indicate that the influence of tire frictional coefficient has an opposite trend to the influence of initial rectilinear velocity.Overall,using bifurcation analysis method to identify the parameter regions of a UAV nonlinear ground dynamic system helps to improve the development efficiency and quality during UAV designing phase.
基金funded by the National Natural Science Foundation of China(Nos.52206131,U2233213and 51775025)the National Key R&D Program of China(2022YFB2602002,2018YFB0104100)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(LQ22E060004)the Science Center of Gas Turbine Project,China(No.P2022-A-I-001-001)。
文摘The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.