期刊文献+
共找到2,048篇文章
< 1 2 103 >
每页显示 20 50 100
Spatiotemporal variability of rain-on-snow events in the arid region of Northwest China
1
作者 YANG Zhiwei CHEN Rensheng +3 位作者 LIU Zhangwen ZHAO Yanni LIU Yiwen WU Wentong 《Journal of Arid Land》 SCIE CSCD 2024年第4期483-499,共17页
Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using dail... Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using daily snow depth data and daily meteorological data from 68 meteorological stations provided by the China Meteorological Administration National Meteorological Information Centre,we investigated the spatiotemporal variability of ROS events in the ARNC from 1978 to 2015 and examined the factors affecting these events and possible changes of future ROS events in the ARNC.The results showed that ROS events in the ARNC mainly occurred from October to May of the following year and were largely distributed in the Qilian Mountains,Tianshan Mountains,Ili River Valley,Tacheng Prefecture,and Altay Prefecture,with the Ili River Valley,Tacheng City,and Altay Mountains exhibiting the most occurrences.Based on the intensity of ROS events,the areas with the highest risk of flooding resulting from ROS events in the ARNC were the Tianshan Mountains,Ili River Valley,Tacheng City,and Altay Mountains.The number and intensity of ROS events in the ARNC largely increased from 1978 to 2015,mainly influenced by air temperature and the number of rainfall days.However,due to the snowpack abundance in areas experiencing frequent ROS events in the ARNC,snowpack changes exerted slight impact on ROS events,which is a temporary phenomenon.Furthermore,elevation imposed lesser impact on ROS events in the ARNC than other factors.In the ARNC,the start time of rainfall and the end time of snowpack gradually advanced from the spring of the current year to the winter of the previous year,while the end time of rainfall and the start time of snowpack gradually delayed from autumn to winter.This may lead to more ROS events in winter in the future.These results could provide a sound basis for managing water resources and mitigating related disasters caused by ROS events in the ARNC. 展开更多
关键词 rain-on-snow events SNOWPACK SNOWMELT climate change Spearman's rank correlation arid region of Northwest China
下载PDF
Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India
2
作者 Suchitra PANDEY Geetilaxmi MOHAPATRA Rahul ARORA 《Regional Sustainability》 2024年第2期103-122,共20页
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t... Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions. 展开更多
关键词 Climate change Generalized additive model(GAM) Depth to groundwater level(DGWL) Climatic and anthropogenic variables arid and semi-arid regions
下载PDF
Innovative Technologies for Large-Scale Water Production in Arid Regions: Strategies for Sustainable Development
3
作者 Boris Menin 《Journal of Applied Mathematics and Physics》 2024年第7期2506-2558,共53页
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate... Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development. 展开更多
关键词 Atmospheric Water Generation Advanced Desalination Sustainable Development Geothermal Water Extraction Water Recycling arid regions Water Security
下载PDF
Study on Soil Microbiotic Crust and Its Influences on Sand-fixing Vegetation in Arid Desert Region 被引量:132
4
作者 李新荣 张景光 +2 位作者 王新平 刘立超 肖洪浪 《Acta Botanica Sinica》 CSCD 2000年第9期965-970,共6页
Based on secular fixed_site data in the artificial sand_fixing vegetation district at the southeast fringe of the Tengger Desert, the formative characteristics of soil microbiotic crusts and its influences on vegetati... Based on secular fixed_site data in the artificial sand_fixing vegetation district at the southeast fringe of the Tengger Desert, the formative characteristics of soil microbiotic crusts and its influences on vegetation dynamics were analyzed. Once sand barrier and artificial vegetation have stabilized the surface of the sifting sand, could form aeolian deposition crust and then evolve into algae_dominated crust. Such processes result from the interactions of physical effects of atmospheric dust and silt deposition on sand surface, sinking and raindrop impact, and soil microorganism activities. Under the condition of less than 200 mm precipitation, the presence of microbiotic crust changes the soil hydraulic conductivity, alters the temporal and spatial distribution of the limited precipitation in sand layer and leads to the decline of deep_rooted shrubs. The development of microbiotic crust and subsurface soil affects the plant growth and seed rain distribution, as a result, the diversity of plant species gradually tend to become saturated and finally affects the vegetation stability. 展开更多
关键词 arid desert region microbiotic crust sand_fixing vegetation
下载PDF
Pollen Assemblage Features of Modern Water Samples from the Shiyang River Drainage, Arid Region of China 被引量:7
5
作者 朱艳 陈发虎 +2 位作者 程波 张家武 David B.MADSEN 《Acta Botanica Sinica》 CSCD 2002年第3期367-372,共6页
Pollen analysis of 30 modem water samples from the Shivang River, an internal river system located between the Tengger and Badain Jaran deserts, Northwest China was carried out to examine the river's capacity to c... Pollen analysis of 30 modem water samples from the Shivang River, an internal river system located between the Tengger and Badain Jaran deserts, Northwest China was carried out to examine the river's capacity to carry pollen and spores, and to assess the contribution of the water-borne pollen to pollen assemblages in lake sediments at the end of the river system. Results indicate the pollen assemblages in water samples consist of both local and upland pollen. Percentages of upland pollen reach 30% - 60%, and pollen assemblages in water samples do not indicate the nature of local vegetation at the sampling sites. Fluvial currents have the capacity to transport large quantities of pollen long distances, and the contribution of this fluvial transported pollen is relatively high, For example, percentages of Picea Dietr. pollen in water samples at sampling sites 130 km and 145 km away from Picea forests reach 16.5% and 7.7%, respectively. Fluvial pollen transport occurs primarily during flood periods, and pollen concentrations from the flood samples are 17.1 - 12.5 times those from normal fluvial flow. Reservoirs affect pollen transportation since pollen is deposited at reservoir inlets and pollen concentrations are much reduced at reservoir outlets. Human activity can thus change natural features of pollen transportation and deposition. The main factors influencing pollen concentrations and assemblages are sampling time, sampling location, and rainfall intensity. 展开更多
关键词 pollen analysis modern river water Shiyang River arid region of China
下载PDF
Interactions between Vegetation and Climatic Factors in Typical Arid and Humid Regions of China Based on NDVI 被引量:1
6
作者 李洪利 孙善磊 +3 位作者 孙杰 黄珏 顾人颖 骆杨 《Meteorological and Environmental Research》 CAS 2010年第2期48-52,56,共6页
According to the distribution of arid and humid regions in China,the typical arid region (Erjina),the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau) and the typical humid region (Poyang Lake basin... According to the distribution of arid and humid regions in China,the typical arid region (Erjina),the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau) and the typical humid region (Poyang Lake basin) were selected as the study areas.Based on NDVI data from 1982 to 2000 and meteorological observing data of three study areas from 1981 to 2000,the interactions between vegetation NDVI and climatic factors (temperature and precipitation) in typical arid and humid regions were discussed in this study.The results showed that in the responses of vegetation to climatic factors,vegetation in the typical arid region (Erjina) was more sensitive to precipitation,while vegetation in the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau) was more sensitive to both temperature and precipitation,and vegetation in the typical humid region (Poyang Lake basin) was more sensitive to temperature.As for effects of vegetation on climatic factors,there was a remarkable negative correlation between vegetation NDVI in the past winter and temperature in the present summer,and also a significant positive correlation between vegetation NDVI in the past winter and precipitation in the present summer.However,in the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau),there was a significant positive correlation between vegetation NDVI in the present spring and temperature in the present summer. 展开更多
关键词 Typical arid and humid region NDVI Climatic factor Temperature PRECIPITATION China
下载PDF
Changes in Mean and Extreme Temperature and Precipitation over the Arid Region of Northwestern China: Observation and Projection 被引量:47
7
作者 Yujie WANG Botao ZHOU +3 位作者 Dahe QIN Jia WU Rong GAO Lianchun SONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第3期289-305,共17页
This paper reports a comprehensive study on the observed and projected spatiotemporal changes in mean and extreme climate over the arid region of northwestern China, based on gridded observation data and CMIP5 simulat... This paper reports a comprehensive study on the observed and projected spatiotemporal changes in mean and extreme climate over the arid region of northwestern China, based on gridded observation data and CMIP5 simulations under the RCP4.5 and RCP8.5 scenarios. The observational results reveal an increase in annual mean temperature since 1961, largely attributable to the increase in minimum temperature. The annual mean precipitation also exhibits a significant increasing tendency. The precipitation amount in the most recent decade was greater than in any preceding decade since 1961. Seasonally, the greatest increase in temperature and precipitation appears in winter and in summer, respectively. Widespread significant changes in temperature-related extremes are consistent with warming, with decreases in cold extremes and increases in warm extremes. The warming of the coldest night is greater than that of the warmest day, and changes in cold and warm nights are more evident than for cold and warm days. Extreme precipitation and wet days exhibit an increasing trend, and the maximum number of consecutive dry days shows a tendency toward shorter duration. Multi-model ensemble mean projections indicate an overall continual increase in temperature and precipitation during the 21 st century. Decreases in cold extremes, increases in warm extremes, intensification of extreme precipitation, increases in wet days, and decreases in consecutive dry days, are expected under both emissions scenarios, with larger changes corresponding to stronger radiative forcing. 展开更多
关键词 climate change arid region OBSERVATION CMIP5 projection
下载PDF
Hydrological and water cycle processes of inland river basins in the arid region of Northwest China 被引量:13
8
作者 CHEN Yaning LI Baofu +2 位作者 FAN Yuting SUN Congjian FANG Gonghuan 《Journal of Arid Land》 SCIE CSCD 2019年第2期161-179,共19页
The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oa... The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources(including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that:(1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains;(2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains;(3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and(4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region. 展开更多
关键词 water resources climate change RIVER runoff BASEFLOW streamflow composition INLAND RIVER basin arid region of NORTHWEST China
下载PDF
Study on Soil Salinization Information in Arid Region Using Remote Sensing Technique 被引量:13
9
作者 Tashpolat Tiyip 《Agricultural Sciences in China》 SCIE CAS CSCD 2011年第3期404-411,共8页
Extracting information about saline soils from remote sensing data is useful, particularly given the environmental significance and changing nature of these areas in arid environments. One interesting case study to co... Extracting information about saline soils from remote sensing data is useful, particularly given the environmental significance and changing nature of these areas in arid environments. One interesting case study to consider is the delta oasis of the Weigan and Kuqa rivers, China, which was studied using a Landsat Enhanced Thematic Mapper Plus (ETM+) image collected in August 2001. In recent years, decision tree classifiers have been successfully used for land cover classification from remote sensing data. Principal component analysis (PCA) is a popular data reduction technique used to help build a decision tree; it reduces complexity and can help the classification precision of a decision tree to be improved. A decision tree approach was used to determine the key variables to be used for classification and ultimately extract salinized soil from other cover and soil types within the study area. According to the research, the third principal component (PC3) is an effective variable in the decision tree classification for salinized soil information extraction. The research demonstrated that the PC3 was the best band to identify areas of severely salinized soil; the blue spectral band from the ETM+ sensor (TM1) was the best band to identify salinized soil with the salt-tolerant vegetation of tamarisk (Tamarix chinensis Lour); and areas comprising mixed water bodies and vegetation can be identified using the spectral indices MNDWI (modified normalized difference water index) and NDVI (normalized difference vegetation index). Based upon this analysis, a decision tree classifier was applied to classify landcover types with different levels of soil saline. The results were checked using a statistical accuracy assessment. The overall accuracy of the classification was 94.80%, which suggested that the decision tree model is a simple and effective method with relatively high precision. 展开更多
关键词 soil salinization information arid region remote sensing
下载PDF
Effects of cotton field management practices on soil CO2 emission and C balance in an arid region of Northwest China 被引量:8
10
作者 QianBing ZHANG Ling YANG +4 位作者 ZhenZhu XU YaLi ZHANG HongHai LUO Jin WANG WangFeng ZHANG 《Journal of Arid Land》 SCIE CSCD 2014年第4期468-477,共10页
Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three ... Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three crop field management practices on soil CO2 emission and C balance in a cotton field in an arid region of Northwest China. The three management practices were irrigation methods(drip and flood), stubble managements(stubble-incorporated and stubble-removed) and fertilizer amendments(no fertilizer(CK), chicken manure(OM), inorganic N, P and K fertilizer(NPK), and inorganic fertilizer plus chicken manure(NPK+OM)). The results showed that within the C pool range, soil CO2 emission during the whole growing season was higher in the drip irrigation treatment than in the corresponding flood irrigation treatment, while soil organic C concentration was larger in the flood irrigation treatment than in the corresponding drip irrigation treatment. Furthermore, soil CO2 emission and organic C concentration were all higher in the stubble-incorporated treatment than in the corresponding stubble-removed treatment, and larger in the NPK+OM treatment than in the other three fertilizer amendments within the C pool range. The combination of flood irrigation, stubble incorporation and application of either NPK+OM or OM increased soil organic C concentration in the 0-60 cm soil depth. Calculation of net ecosystem productivity(NEP) under different management practices indicated that the combination of drip irrigation, stubble incorporation and NPK+OM increased the size of the C pool most, followed by the combination of drip irrigation, stubble incorporation and NPK. In conclusion, management practices have significant impacts on soil CO2 emission, organic C concentration and C balance in cotton fields. Consequently, appropriate management practices, such as the combination of drip irrigation, stubble incorporation, and either NPK+OM or NPK could increase soil C storage in cotton fields of Northwest China. 展开更多
关键词 arid region oasis cotton field management practices soil C balance soil organic C soil respiration
下载PDF
Runoff Responses to Climate Change in Arid Region of Northwestern China During 1960-2010 被引量:13
11
作者 WANG Huaijun CHEN Yaning +1 位作者 LI Weihong DENG Haijun 《Chinese Geographical Science》 SCIE CSCD 2013年第3期286-300,共15页
Based on runoff, air temperature, and precipitation data from 1960 to 2010, the effects of climate change on water resources in the arid region of the northwestern China were investigated. The long-term trends of hydr... Based on runoff, air temperature, and precipitation data from 1960 to 2010, the effects of climate change on water resources in the arid region of the northwestern China were investigated. The long-term trends of hydroclimatic variables were studied by using both Mann-Kendall test and distributed-free cumulative sum (CUSUM) chart test. Results indicate that the mean annual air temperature increases significantly from 1960 to 2010. The annual precipitation exhibits an increasing trend, especially in the south slope of the Tianshan Mountains and the North Uygur Autonomous Region of Xinjiang in the study period. Step changes occur in 1988 in the mean annual air temperature time series and in 1991 in the precipitation time series. The runoff in different basins shows different trends, i.e., significantly increasing in the Kaidu River, the Aksu River and the Shule River, and decreasing in the Shiyang River. Correlation analy- sis reveals that the runoff in the North Xinjiang (i.e., the Weigan River, the Heihe River, and the Shiyang River) has a strong positive relationship with rainfall, while that in the south slope of the Tianshan Mountains, the middle section of the north slope of the Tianshan Mountains and the Shule River has a strong positive relationship with air temperature. The trends of rtmoff have strong negative correla- tions with glacier coverage and the proportion of glacier water in runoff. From the late 1980s, the climate has become warm and wet in the arid region of the northwestern China. The change in runoff is interacted with air temperature, precipitation and glacier coverage. The results show that streamflow in the arid region of the northwestern China is sensitive to climate change, which can be used as a reference for regional water resource assessment and management. 展开更多
关键词 hydroclimatic variables climate change step change water resources arid region
下载PDF
Improvement of Surface Albedo Simulations over Arid Regions 被引量:4
12
作者 鲍艳 吕世华 +2 位作者 张宇 孟宪红 杨胜朋 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第3期481-488,共8页
To improve the simulation of the surface radiation budget and related thermal processes in arid regions, three sophisticated surface albedo schemes designed for such regions were incorporated into the Biosphere- Atmos... To improve the simulation of the surface radiation budget and related thermal processes in arid regions, three sophisticated surface albedo schemes designed for such regions were incorporated into the Biosphere- Atmosphere Transfer Scheme (BATS). Two of these schemes are functions of the solar zenith angle (SZA), where the first one has one adjustable parameter defined as SZA1 scheme, and the second one has two empirical parameters defined as SZA2 scheme. The third albedo scheme is a function of solar angle and soil water that were developed based on arid-region observations from the Dunhuang field experiment (DHEX) (defined as DH scheme). We evaluated the performance of the original and newly-incorporated albedo schemes within BATS using the in-situ data from the Oasis System Energy and Water Cycle Field Experiment that was carried out in JinTa, Gansu arid area (JTEX). The results indicate that a control run by the original version of the BATS generates a constant albedo, while the SZA1 and SZA2 schemes basically can reproduce the observed diurnal cycle of surface albedo, although these two schemes still underestimate the albedo when SZA is high in the early morning and late afternoon, and overestimate it when SZA is low during noontime. The SZA2 scheme has a better overall performance than the SZA1 scheme. In addition, BATS with the DH scheme slightly improves the albedo simulation in magnitude as compared to that from the control run, but a diurnal cycle of albedo is not produced by this scheme. The SZA1 and SZA2 schemes significantly increase the surface absorbed solar radiation by nearly 70 W m^-2, which further raises the ground temperature by 6 K and the sensible heat flux by 35 W m^-2. The increased solar radiation, heat flux, and temperature are more consistent with the observations that those from the control run. However, a significant improvement in these three variables is not found in BATS with the DH scheme due to the neglect of the diurnal cycle of albedo. Further analysis indicates that during cloudy days the solar radiation simulations of BATS with these three schemes are not in a good agreement with the observations, which implies that a more realistic partitioning of diffuse and direct radiation is needed in future land surface process simulations. 展开更多
关键词 arid region bare soil surface albedo solar zenith angle (SZA) BATS
下载PDF
Emergy-based study on eco-economic system of arid and semi-arid region:a case of Gansu province,China 被引量:5
13
作者 Xue, Bing Chen, XingPeng +3 位作者 Geng, Yong Yang, Mian Yang, FuXia Hu, XiaoFen 《Journal of Arid Land》 SCIE 2010年第3期207-213,共7页
Taking Gansu province as a model case,this study provides an integrated analysis on the eco-economic system of arid and semi-arid region based on emergy synthesis theory. Through calculating the values of renewable em... Taking Gansu province as a model case,this study provides an integrated analysis on the eco-economic system of arid and semi-arid region based on emergy synthesis theory. Through calculating the values of renewable emergy flow,non-renewable resources,imported emergy,exported emergy,waste emergy,and total emergy during the period of 1978-2007,the performance of Gansu eco-economic system was analyzed. The results indicated that the renewable emergy flow within the province basically remained steady state which was estimated at 2.99×1022 solar emjoules (sej) from 1978 to 2007. The imported emergy and exported emergy were estimated at 3.75×1017 sej and 2.99×1020 sej in 1978 and increased to 1.07×1022 sej and 1.44×1022 sej respectively in 2007. The nonrenewable emergy flow was estimated at 1.62×1022 sej and increased to 1.85×1023 sej,with annual growth rate of 8.7%,while the estimated total emergy was 4.58×1022 sej in 1978 and increased to 2.11×1023 sej in 2007,with annual growth rate of 5.41%. Our results indicate a deteriorate situation between economic development and environmental protection in the region. The rapid economic growth in the past thirty years was based on a great consumption of nonrenewable resource and caused continuous decrease in the capacity of sustainable development. The environmental loading ratio was 0.53 in 1978,increased to 6.06 in 2007,indicating a rapid degradation of the regional environment quality. We calculated that the actual population was 1.53 times the renewable resource population in 1978,increased to 7.06 times in 2007. During the period of 1978-2007,the emergy rose from 2.45×1015 sej/(capita·a) to 8.07×1015 sej/(capita·a). Our analysis revealed that the emergy density presented a trend of gradual increase,and then the emergy currency ratio in Gansu decreased from 7.08×1013 sej/Chinese Yuan to 7.82×1012 sej/Chinese Yuan. 展开更多
关键词 emergy analysis economic geography regional sustainable development arid and semi-arid area Gansu province
下载PDF
Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region 被引量:9
14
作者 LI Xianju CHEN Gang +3 位作者 LIU Jingyi CHEN Weitao CHENG Xinwen LIAO Yiwei 《Chinese Geographical Science》 SCIE CSCD 2017年第5期827-835,共9页
Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was eff... Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidE ye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows: 1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement(3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions. 展开更多
关键词 arid region land cover classification RapidEye red-edge band vegetation indices random forest Dunhuang Basin
下载PDF
Effects of irrigation on precipitation in the arid regions of Xinjiang,China 被引量:4
15
作者 Yong ZHAO YongJie FANG +1 位作者 CaiXia CUI AnNing HUANG 《Journal of Arid Land》 SCIE 2012年第2期132-139,共8页
Soil moisture is an important parameter for the interaction between soil and atmosphere. It is the sec- ond important factor that influences climate change, next to sea surface temperature (SST). Most previous studi... Soil moisture is an important parameter for the interaction between soil and atmosphere. It is the sec- ond important factor that influences climate change, next to sea surface temperature (SST). Most previous studies focused on the monsoon regions in East China, and only a few laid emphases on arid environments. In Xinjiang, which is located in Northwest China, the climate is typically arid and semi-arid. During the past 20 years, the pre- cipitation in Xinjiang has shown a significant increasing trend, and it is closely related to oasis irrigation. This paper aims at discussing whether abnormal soil moisture in spring can be the signal to forecast summer precipitation. The effects of abnormal soil moisture due to farm irrigation in spring in arid environments on regional climate are inves- tigated by using a regional climate model (RegCM3). The results indicate that positive soil moisture anomaly in irrigated cropland surface in May led to an increase in precipitation in spring as well as across the whole summer. The impact could last for about four months. The effects of soil moisture on the surface air temperature showed a time-lagging trend. The summer air temperature declined by a maximum amplitude of 0.8℃. The increased soil moisture could enhance evaporation and ascending motion in the low troposphere, which brought in more precipi- tation. The soil moisture affected regional weather and climate mainly by altering the surface sensible and latent heat fluxes. 展开更多
关键词 IRRIGATION abnormal soil moisture weather and climate effects PRECIPITATION arid region XINJIANG
下载PDF
CHARACTERISTICS OF WATER TRANSFORMATION AND ITS EFFECTS ON ENVIRONMENT IN THE ARID REGION —A case study in Alar irrigation region of Xinjiang, China 被引量:2
16
作者 Xin Li Yu-dong Song Fu-hua Nian 《Chinese Geographical Science》 SCIE CSCD 2000年第1期53-61,共9页
The characteristics of water balance in arid regions is that the streams are formed in mountain area and continuously evaporates and infiltrates in the process of flowing to plain area, streams finally disappear in th... The characteristics of water balance in arid regions is that the streams are formed in mountain area and continuously evaporates and infiltrates in the process of flowing to plain area, streams finally disappear in the desert or flow into the lakes, which are the low reaches of the rivers. But the distribution and transformation of water in Xinjiang, China have changed under the influences of human activities. The influences of human activities take place in a short time and regionally, especially in arid land where water is the key factor of environment. Water inside of oasis has increased, and water out of oasis or at the lower reaches of the river has decreased. Human activities have caused the environment changes in both positive and negative aspects by changing the circulation and distribution of water. Under the influence of human activities, oases in Xinjiang have expanded, meanwhile some lakes have contracted desertification is serious, natural vegetation has declined and natural environment out of oasis has degenrated. 展开更多
关键词 arid region WATER TRANSFORMATION human activity ENVIRONMENT
下载PDF
Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China? 被引量:7
17
作者 FENG Jian ZHAO Lingdi +3 位作者 ZHANG Yibo SUN Lingxiao YU Xiang YU Yang 《Journal of Arid Land》 SCIE CSCD 2020年第5期837-853,共17页
There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,... There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,and Shaanxi Province)in Northwest China,most areas of which are located in arid and semi-arid regions(northwest of the 400 mm precipitation line),accounting for 58.74%of the country's land area and sustaining approximately 7.84×10^6 people.Because of drought conditions and fragile ecology,these regions cannot develop agriculture at the expense of the environment.Given the challenges of global warming,the green total factor productivity(GTFP),taking CO2 emissions as an undesirable output,is an effective index for measuring the sustainability of agricultural development.Agricultural GTFP can be influenced by both internal production factors(labor force,machinery,land,agricultural plastic film,diesel,pesticide,and fertilizer)and external climate factors(temperature,precipitation,and sunshine duration).In this study,we used the Super-slacks-based measure(Super-SBM)model to measure agricultural GTFP during the period 2000-2016 at the regional level.Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period(2000-2016),and the fluctuation was caused by the production factors(input and output factors).To improve agricultural GTFP,Shaanxi,Shanxi,and Gansu should reduce agricultural labor force input;Shaanxi,Inner Mongolia,Gansu,and Shanxi should decrease machinery input;Shaanxi,Inner Mongolia,Xinjiang,and Shanxi should reduce fertilizer input;Shaanxi,Xinjiang,Gansu,and Ningxia should reduce diesel input;Xinjiang and Gansu should decrease plastic film input;and Gansu,Shanxi,and Inner Mongolia should cut pesticide input.Desirable output agricultural earnings should be increased in Qinghai and Tibet,and undesirable output(CO2 emissions)should be reduced in Inner Mongolia,Xinjiang,Gansu,and Shaanxi.Agricultural GTFP is influenced not only by internal production factors but also by external climate factors.To determine the influence of climate factors on GTFP in these provinces and autonomous regions,we used a Geographical Detector(Geodetector)model to analyze the influence of climate factors(temperature,precipitation,and sunshine duration)and identify the relationships between different climate factors and GTFP.We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions.For Xinjiang,Inner Mongolia,and Tibet,a suitable average annual temperature would be in the range of 7℃-9℃;for Gansu,Shanxi,and Ningxia,it would be 11℃-13℃;and for Shaanxi,it would be 15℃-17℃.Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture.Hence,in the agricultural production process,reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures,thereby improving the agricultural GTFP.The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions,identifying an effective way forward for the arid and semi-arid regions of Northwest China. 展开更多
关键词 climate change agricultural GTFP Super-slacks-based measure(Super-SBM)model Geodetector CO2 emissions arid regions semi-arid regions
下载PDF
Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis 被引量:5
18
作者 NING Like XIA Jun +1 位作者 ZHAN Chesheng ZHANG Yongyong 《Journal of Arid Land》 SCIE CSCD 2016年第4期506-520,共15页
Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Mod... Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources. 展开更多
关键词 Community Land Model (CLM) Distributed Time Variant Gain Model (DTVGM) Ensemble EmpiricalMode Decomposition (EEMD) decadal variability arid and semi-arid regions
下载PDF
Study on the oasis corridor landscape in the arid regions based on RS and GIS methods—application of Jinta Oasis, China 被引量:2
19
作者 MAMing-guo WANGXue-mei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第2期193-198,共6页
The study on the oasis corridor landscape is a new hotspot in the ecological environment research in the arid regions. In oasis, main corridor landscape types include river, ditch, shelterbelt and road. This paper int... The study on the oasis corridor landscape is a new hotspot in the ecological environment research in the arid regions. In oasis, main corridor landscape types include river, ditch, shelterbelt and road. This paper introduces the basic ecological effects of the corridor landscape on the transporting mass and energy and obstructing desert landscape expansion and incursion. Using Geographic Information System(GIS), we have researched the corridor distribution and its spatial relationship with other landscape types in the Jinta Oasis. Based on the dynamically monitoring on the landscape pattern change of the Jinta Oasis during the latter 10 years by using Remote Sensing(RS) and GIS,the driving functions of the corridors on this change have been analyzed in detail. The analysis results showed that all kinds of corridors' characteristics can be quantified by the indexes such as length and width, ratio of perimeter and area, density and non-heterogeneity. The total corridor length of Jinta Oasis is 1838.5 km and its density is 2.1 km/km 2. The corridor density of the irrigation land, forest and resident area is maximal, which shows that affection degree of the oasis corridors on them is the most. The improvement of the corridors quality is one of the important driving factors on the irrigation land and so on. The organic combination of the RS and GIS technologies and landscape research methods would be an effective means for the corridor landscape research on arid region oasis. 展开更多
关键词 arid region OASIS corridor landscape RS GIS
下载PDF
Assessment of impact of water diversion projects on ecological water uses in arid region 被引量:3
20
作者 Song-hao SHANG Hui-jie WANG 《Water Science and Engineering》 EI CAS CSCD 2013年第2期119-130,共12页
In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, we... In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent. 展开更多
关键词 arid region water diversion project environmental impact assessment ecological water use environmental flow riparian forest analytic hierarchy process
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部