期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels 被引量:7
1
作者 Zhi-gang Wang A i-min Zhao +3 位作者 Zheng-zhi Zhao Jie-yun Ye Di Tang Guo-sen Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期915-922,共8页
The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tens... The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposi- tion of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior. 展开更多
关键词 high strength steel dual-phase steel alloying elements microstructure mechanical properties sWain hardening
下载PDF
Numerical simulation on the microstress and microstrain of low Si-Mn-Nb dual-phase steel 被引量:7
2
作者 Hai-feng Dong Jing Li +2 位作者 Yue Zhang Joongkeun Park Qing-xiang Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第2期173-178,共6页
According to the stress-strain curves of single-phase martensite and single-phase ferrite steels,whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel,the stress-strain cur... According to the stress-strain curves of single-phase martensite and single-phase ferrite steels,whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel,the stress-strain curve of the low Si-Mn-Nb dual-phase steel was simulated using the finite element method(FEM).The simulated result was compared with the measured one and they fit closely with each other, which proves that the FE model is correct.Based on the FE model,the microstress and microstrain of the dual-phase steel were analyzed. Meanwhile,the effective factors such as the volume fraction of martensite and the yield stress ratio between martensite and ferrite phases on the stress-strain curves of the dual-phase steel were simulated,too.The simulated results indicate that for the low Si-Mn-Nb dual-phase steel, the maximum stress occurs in the martensite region,while the maximum strain occurs in the ferrite one.The effect of the volume fraction of martensite(fm) and the yield stress ratio on the stress-strain curve of the dual-phase steel is small in the elastic part,while it is obvious in the plastic part.In the plastic part of this curve,the strain decreases with the increase of f_M,while it decreases with the decrease of the yield stress ratio. 展开更多
关键词 dual-phase steel microstress MICROSTRAIN numerical simulation finite element method(FEM)
下载PDF
Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel 被引量:3
3
作者 Chun-fu Kuang Zhi-wang Zheng +2 位作者 Min-li Wang Quan Xu Shen-gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1379-1383,共5页
A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simula... A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel(DP600) was investigated using optical microscopy, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength(YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient(n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength(UTS) and elongation(A80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties(YS = 362 MPa, UTS = 638 MPa, A_(80) = 24.3%, n = 0.17) was obtained via process A. 展开更多
关键词 hot-dip GALVANIZING process dual-phase steel MICROSTRUCTURE mechanical properties
下载PDF
Effects of pre-strain and baking parameters on the microstructure and bake-hardening behavior of dual-phase steel 被引量:3
4
作者 Chun-fu Kuang Shen-gen Zhang +2 位作者 Jun Li Jian Wang Hua-fei Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期766-771,共6页
In a typical process, C-Mn steel was annealed at 800℃ for 180 s, and then cooled rapidly to obtain the ferrite-martensite microstructure. After pre-straining, the specimens were baked and the corresponding bake-harde... In a typical process, C-Mn steel was annealed at 800℃ for 180 s, and then cooled rapidly to obtain the ferrite-martensite microstructure. After pre-straining, the specimens were baked and the corresponding bake-hardening (BH) values were determined as a function of pre-strain, baking temperature, and baking time. The influences ofpre-strain, baking temperature and baking time on the microstructure evolution and bake-hardening behavior of the dual-phase steel were investigated systematically. It was found that the BH value apparently increased with an increase in pre-strain in the range from 0 to 1%; however, increasing pre-strain from 1% to 8% led to a decrease in the BH value. Furthermore, an increase in baking temperature favored a gradual improvement in the BH value because of the formation of Cottrell atmosphere and the precipitation of carbides in both the ferrite and martensite phases. The BH value reached a maximum of 110 MPa at a baking temperature of 300℃. Moreover, the BH value enhanced significantly with increasing baking time from 10 to 100 min. 展开更多
关键词 dual-phase steel PRE-STRAIN baking treatment MICROSTRUCTURE HARDENING
下载PDF
Effect of Holding Time on the Microstructure and Mechanical Properties of Dual-Phase Steel during Intercritical Annealing 被引量:3
5
作者 李壮 WU Di +3 位作者 Lü Wei YU Huanhuan SHAO Zhenyao LUO Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期156-161,共6页
Continuous annealing simulation tests were conducted by using a continuous annealing thermomechanical simulator. Holding times of 5, 60, 180, and 480 seconds for an intercritical annealing temperature of 820℃ were ad... Continuous annealing simulation tests were conducted by using a continuous annealing thermomechanical simulator. Holding times of 5, 60, 180, and 480 seconds for an intercritical annealing temperature of 820℃ were adopted to investigate the evolution of the mierostructure and mechanical properties of ferrite-bainite dual-phase steel. The ferrite-bainite dual-phase steel was characterized by high strength and low yield ratio due to the presence of the constituents (polygonal ferrite, bainite, martensite and retained austenite) of the steel microstructure. Specimen 3 exhibits the highest value of A50 (7.67%) and a product of Rm × A50 (10453MPa%) after a 180s holding. This is likely attributed to the presence of a C-enriched retained anstenite in the microstructure. And the effect of martensite islands and carbide precipitate is thought to be able to contribute in strengthening the present steel. It is expected that equilibrium of anstenite fraction would be reached for reasonable intercritical holding period, regardless of the heating temperature. The results suggest that long increasing holding times may not be needed because the major phase of the microstructure does not change very significantly. It is favorable for industrial production of DP steels to shorten holding times. Key words: ferrite-bainite dual-phase steel; holding time; martensite islands; mechanical properties 展开更多
关键词 ferrite-bainite dual-phase steel holding time maxtensite islands mechanical properties
下载PDF
Corrosion behavior of tempered dual-phase steel embedded in concrete 被引量:2
6
作者 Oguzhan Kelestemur Mustafa Aksoy Servet Ylldlz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期43-50,共8页
Dual-phase (DP) steels with different martensite contents were obtained by appropriate heat treatment of an SAE1010 structural carbon steel, which was cheap and widely used in the construction industry. The corrosio... Dual-phase (DP) steels with different martensite contents were obtained by appropriate heat treatment of an SAE1010 structural carbon steel, which was cheap and widely used in the construction industry. The corrosion behavior of DP steels in concrete was investigated under various tempering conditions. Intercritical annealing heat treatment was applied to the reinforcing steel to obtain DP steels with different contents of martensite. These DP steels were tempered at 200, 300, and 400℃ for 45 min and then cooled to room temperature. Corrosion experiments were conducted in two stages. In the first stage, the corrosion potential of DP steels embedded in concrete was measured every day for a period of 30 d based on the ASTM C 876 standard. In the second stage, the anodic and cathodic polarization values of these steels were obtained and subsequently the corrosion currents were determined with the aid of cathodic polarization curves. It was observed that the amount of second phase had a definite effect on the corrosion behavior of the DP steel embedded in concrete. As a result of this study, it is found that the corrosion rate of the DP steel increases with an increase in the amount of martensite. 展开更多
关键词 dual-phase steel CORROSION tempering treatment MARTENSITE CONCRETE
下载PDF
Effect of intercritical annealing on microstructure,mechanical properties,and work-hardening behavior of ultrahigh-strength dual-phase steels with different silicon contents 被引量:3
7
作者 LI Wei1 John G SPEER +1 位作者 ZHU Xiaodong LI Wei 《Baosteel Technical Research》 CAS 2018年第4期1-8,共8页
In this study,three kinds of dual-phase(DP) steels were used to investigate the influence of silicon content and intercritical annealing temperature on their microstructures,mechanical properties,and work-hardening be... In this study,three kinds of dual-phase(DP) steels were used to investigate the influence of silicon content and intercritical annealing temperature on their microstructures,mechanical properties,and work-hardening behaviors. By adding silicon and matching the critical annealing temperature,a new DP steel(1.0Si and intercritically annealed at 790 ℃) that exhibits an excellent combination of ultrahigh strength and adequate ductility was obtained. Variations in the strength,elongation,and fracture mechanism of the specimens with respect to different intercritical annealing temperatures were correlated to microstructural features. With an increase in the silicon content,there is no significant change in the martensitic band structure or ferrite morphology. At the same annealing temperature,the yield strength and yield strength ratio of the specimens decreased,but at different annealing temperatures,the tensile strength was reduced. The Hollomon analysis results indicate that the workhardening behavior obeys a two-stage work-hardening mechanism. With an increasing intercritical annealing temperature,the "transition strain"shifts to the left,and with an increasing silicon content,the "transition strain"shifts to the right. The surface exhibits ductile fractures characterized by a high density of microvoid dimples. With an increase in the silicon content,the average dimple size on the fracture surface decreases and the plasticity of the material increases. 展开更多
关键词 dual-phase steel thermomechanical processing MICROSTRUCTURE mechanical
下载PDF
Effects of overaging temperature on the microstructure and properties of 600MPa cold-rolled dual-phase steel 被引量:4
8
作者 Chun-fu Kuang Zhi-wang Zheng +3 位作者 Gong-ting Zhang Jun Chang Shen-gen Zhang Bo Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期943-948,共6页
C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) ... C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH_2 behavior of 600 MPa cold-rolled dual-phase(DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8% to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH_2 value initially increases and then decreases. The maximum BH_2 value of 83 MPa was observed for the specimen overaged at 350°C. 展开更多
关键词 dual-phase steel overaging temperature microstructure mechanical properties carbides
下载PDF
Plastic Deformation Mechanism of Dual-phase Steel at Different Strain Rates 被引量:1
9
作者 PANG Qihang ZHAO Zhenduo +2 位作者 XU Mei XU Zhen ZHAO Tan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第6期1142-1148,共7页
The mechanical properties of dual-phase steel (DP1000) over the strain rate range of 10^-3-10^3 s^-1 were studied using an electronic universal testing machine and a high-speed tensile testing machine.The plastic defo... The mechanical properties of dual-phase steel (DP1000) over the strain rate range of 10^-3-10^3 s^-1 were studied using an electronic universal testing machine and a high-speed tensile testing machine.The plastic deformation mechanism was investigated from the perspectives of the strain rate sensitivity index,activation volume and dynamic factors.The results show that the tensile strength and yield strength of DP1000 increase as the strain rate increases.The elongation increases without any change after fracture,and then decreased rapidly when the strain rate reaches 103 s^-1.The true strain curves of DP1000 show three stages:the point of instability decreases in the strain range of 10^-3-10^-1 s^-1;the instability point increases between 100-5×10^2 s^-1;above 5×10^2 s^-1,and the instability strain becomes smaller again.The plastic deformation mechanism of the DP was determined by the competitive contributions of work hardening (strain hardening,strain rate hardening) and softening effects due to the adiabatic temperature rise. 展开更多
关键词 dual-phase steel strain rate plastic deformation MICROSTRUCTURE
下载PDF
Microstructure evolution and mechanical properties of 1000 MPa cold rolled dual-phase steel 被引量:1
10
作者 赵征志 金光灿 +2 位作者 牛枫 唐荻 赵爱民 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期563-568,共6页
The microstructure evolution of 1 000 MPa cold rolled dual-phase (DP) steel at the initial heating stages of the continuous annealing process was analyzed. The effects of different overaging temperatures on the micros... The microstructure evolution of 1 000 MPa cold rolled dual-phase (DP) steel at the initial heating stages of the continuous annealing process was analyzed. The effects of different overaging temperatures on the microstructures and mechanical properties of 1 000 MPa cold rolled DP steel were investigated using a Gleeble-3500 thermal/mechanical simulator. The experimental results show that ferrite recovery and recrystallization, pearlite dissolution and austenite nucleation and growth take place in the annealing process of ultra-high strength cold rolled DP steel. When being annealed at 800 ℃ for 80 s, the tensile strength and total elongation of DP steel can reach 1 150 MPa and 13%, respectively. The microstructure of DP steel mainly consists of a mixture of ferrite and martensite. The steel exhibits low yield strength and continuous yielding which is commonly attributed to mobile dislocations introduced during cooling process from the intercritical annealing temperature. 展开更多
关键词 COLD ROLLED dual-phase steel microstructure evolution RECRYSTALLIZATION MECHANICAL property overaging temperature
下载PDF
CHARACTERISTICS OF MARTENSITIC TRANSFORMATION IN DUAL-PHASE STEELS
11
作者 SHEN Xianpu ZHANG Jie WU Baorong Central Iron and Steel Research Institute.Ministry of Metallurgical Industry.Beijing,ChinaLEI Tingquan Harbin Institute of Technology,Harbin.China Dept.No.13,Central Iron and Steel Research Institute,Ministry of Metallurgical Industry,Beijing,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第5期333-336,共4页
A theorectical expression for the driving force and M_(?) point of martensitic transformation has been proposed.The M_(?) values using this expression are in good agreement with that obtained experimentally.It was fou... A theorectical expression for the driving force and M_(?) point of martensitic transformation has been proposed.The M_(?) values using this expression are in good agreement with that obtained experimentally.It was found that the values of M_(?) and M_(?) are not only related to the carbon content in martensite,but also to the volume fraction of ferrite. 展开更多
关键词 dual-phase steel phase transformation martenstie M_s M_f
下载PDF
The Study of Dual-phase Steel after Cyclic Deformation at Various Strain Amplitudes
12
作者 孙正明 王中光 艾素华 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1989年第6期415-420,共6页
Low cycle fatigue tests under plastic strain control were carried out with a dual-phase steel containing 23 Vol.-% martensite. Specimens hardened rapidly at first few cycles followed by a slight softening to saturati... Low cycle fatigue tests under plastic strain control were carried out with a dual-phase steel containing 23 Vol.-% martensite. Specimens hardened rapidly at first few cycles followed by a slight softening to saturation stages when cycled at higher strain amplitudes, whereas at lower strain amplitudes the specimens presented continually hardening for a long time until saturation. TEM examination of the saturation dislocation structures show that clusters, parallel walls and cells were found at low, medium and high strain amplitude, respectively. It also has been found that the martensite/ferrite interfaces did not affect the dislocation structures signi- ficantly when a specimen was fatigued at lower strain amplitude. However, the dislocation struc- ture adjacent to the two-phase boundary is dif- ferent to some extent from that in the remote regions in the ferrite when a higher strain amplitude is applied. 展开更多
关键词 cyclic deformation dual-phase steel dislocation structure
下载PDF
MICROFRACTOGRAPHY OF NEAR-THRESHOLD FATIGUE CRACK PROPAGATION IN DUAL-PHASE STEELS
13
作者 ZHENG Yesha WANG Zhongguang AI Suhua State Key Laboratory of Fatigue and Fracture for Materials,Institute of Metal Research,Academia Sinica,Shenyang,110015,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第5期385-389,共5页
SEM microfractography of near-threshold fatigue crack propagation were carried out in the dual-phase steels of 3 martensite morphologies and 6 volume fractions of martensite (V_m). All of them are featured by cyclic c... SEM microfractography of near-threshold fatigue crack propagation were carried out in the dual-phase steels of 3 martensite morphologies and 6 volume fractions of martensite (V_m). All of them are featured by cyclic cleavage characteristics in near-threshold region,i.e.,main- ly controlled by mode Ⅱ stress.In the higher ΔK regions,the fracture surfaces are character- ized by mixed modes including cyclic cleavage facets,two types of secondary cracks and striations,etc..The roughness-induced crack closure of fracture surface is attributed primarily to extreme high fatigue crack growth threshold values. 展开更多
关键词 dual-phase steel threshold value fatigue crack growth FRACTOGRAPH NEAR-THRESHOLD
下载PDF
EFFECT OF CRACK CLOSURE ON SLOW PROPAGATION IN DUAL-PHASE STEEL
14
作者 DENG Rongying YE Zhijun Institute of Mechanics,Academia Sinica,Beijing,China LIU Shuhua ZOU Dingqiang China Academy of Railway Sciences,Beijing,China Institute of Mechanics,Academia Sinica,Beijing 100080,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第6期424-428,共5页
The effect of ferrite content in ferrite-martensite dual-phase steel on the initiation and prop- agation of fatigue crack and the plastic deformation at crack tip has been studied.In the range of ferrite content from ... The effect of ferrite content in ferrite-martensite dual-phase steel on the initiation and prop- agation of fatigue crack and the plastic deformation at crack tip has been studied.In the range of ferrite content from 24.2 to 41.5%,the optimum seems to be 33.8%,of which the crack ini- tiation will be prolonged,the threshold value increased,the propagation rate decreased and the closure stress intensity factor increased.As the propagation force is described by effective stress intensity factor,three steels with various ferrite contents will show the same propagation behaviour on da/dN vs △ K_(eff)curve.It is shown that the closure effect increases with the decrease in △K at the fatigue crack tip.When △K equals to △K_(th),the closure effect reaches a maximum value of0.7 in a dual-phase steel with 33.8%ferrite. 展开更多
关键词 dual-phase steel crack closure slow propagation
下载PDF
Thermal-mechanical and springback behavior of dual-phase steel at warm temperatures
15
作者 LIN Qi-quan WANG Zhen-zhu +2 位作者 DONG Wen-zheng BU Gen HUANG Jin-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1895-1905,共11页
For non-quenchable dual-phase(DP)steel sheet,the warm forming process can effectively reduce the amount of springback,and the mechanical parameters that influence its elastic and inelastic recovery to decrease exhibit... For non-quenchable dual-phase(DP)steel sheet,the warm forming process can effectively reduce the amount of springback,and the mechanical parameters that influence its elastic and inelastic recovery to decrease exhibit a strong temperature dependence,especially under cyclic loading conditions.In this paper,the monotonic and cyclic loading tests of DP980 steel sheets are conducted at the temperatures ranging from 25℃ to 500℃.The temperature-dependent flow stress,nonlinear elastic recovery,and Bauschinger effect are investigated.The results demonstrate that both the elastic modulus and Bauschinger effect show an exponential law with pre-strain,and decrease with the increase of forming temperature,while there will be an abnormal phenomenon of rebound due to the influence of dynamic strain aging effect.Meanwhile,a linear relationship between the Bauschinger effect and inelastic strain is observed at various temperatures,and the weight of the Bauschinger effect in the total strain reduces with temperature increasing,which indicates that the springback is dominated by linear elastic recovery.Furthermore,the U-draw bending tests are carried out to clarify the influence of Vickers hardness distribution and martensite size effect on the springback behavior. 展开更多
关键词 warm forming dual-phase steel springback behavior nonlinear elastic recovery Bauschinger effect
下载PDF
Interaction of Hydrogen and Retained Austenite in Bainite/Martensite Dual-Phase High Strength Steel
16
作者 GUJia-lin CHANGKai-di +2 位作者 FANGHong-sheng YANGZhi-gang BAIBing-zhe 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2004年第1期42-46,共5页
The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of... The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1. 展开更多
关键词 BAINITE martensite dual-phase high strength steel electrochemical permeation technique diffusion coefficient retained austenite trap binding energy
下载PDF
A MICROSTRUCTURE-BASED ANALYSIS FOR CYCLIC PLASTICITY OF DUAL-PHASE PEARLITIC RAIL STEELS
17
作者 Peng Xianghe Chang Jian 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第4期334-343,共10页
Based on the assumption that a representative element of apearlitic steel is an aggregate of numerous spherical pearliticcolonies with randomly distributed orientations, and that each colonyis com- posed of many paral... Based on the assumption that a representative element of apearlitic steel is an aggregate of numerous spherical pearliticcolonies with randomly distributed orientations, and that each colonyis com- posed of many parallel fine lamellas of ferrite andcementite, a description for the dual-phase pearlitic steel isobtained by making use of a microstructure-based constitutiveequation for a single dual-phase pearlitic colony and the Hill'sself-consistent scheme. The elastoplastic response of dual-phasepearlitic steel BS11 subjected to asymmetrically cyclic loading isanalyzed, and a comparison with the experimental results showssatisfacto- ry agreement. The non-proportional cyclic plasticity ofBS11 is also analyzed, in which stress develops along a semi-circlein a biaxial tension/compression and shear stress plane, as istypically experienced by the sur- face elements in rolling andsliding contact. 展开更多
关键词 pearlitic steel lamellar dual-phase material Hill's self-consistent scheme cyclic plasticity
下载PDF
Synergistic effects of multiscale TiC and dual-phase structure on tensile properties of particle-reinforced steel
18
作者 Ye Jia Xiang-tao Deng +3 位作者 Qi Wang Cheng-ru Li Hao Wu Zhao-dong Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第5期1232-1245,共14页
The conventional melting methods were used to obtain in situ TiC particle-reinforced dual-phase steel,followed by hot rolling and heat treatment processes.The aim was to investigate the effect of TiC particles on the ... The conventional melting methods were used to obtain in situ TiC particle-reinforced dual-phase steel,followed by hot rolling and heat treatment processes.The aim was to investigate the effect of TiC particles on the fracture behavior of dual-phase steel at different annealing temperatures,by analyzing the microstructure and tensile behavior of the multiscale TiC particle-reinforced dual-phase steel.The results showed that TiC particles precipitated in the as-cast microstructure of dual-phase steel were distributed along the grain boundaries.During hot rolling,the grain boundary-like morphology of the micron-sized TiC particles was disrupted,and the particles became more refined and evenly distributed in the matrix.The tensile tests revealed that the strength of the TiC particle-reinforced dual-phase steel increased with increasing martensite content,while the elongation decreased.These results were similar to those of conventional steel.The addition of 1 vol.%multiscale TiC particles improved the strength of the dual-phase steel but did not affect elongation of the steel.Cracks and holes were primarily concentrated around the TiC particles rather than at the interface of martensite and ferrite.The main causes of crack sprouting were TiC particle interface cracking and TiC particle internal fragmentation.Overall,the study demonstrated the potential of multiscale TiC particle-reinforced dual-phase steel as a strong and tough material.The refined distribution of TiC particles in the matrix improved the strength of the material without compromising its elongation.The results also highlighted the importance of careful selection of reinforcement particles to avoid detrimental effects on the fracture behavior of the material. 展开更多
关键词 TiC particle dual-phase structure TiC-reinforced dual-phase steel Tension Fracture behavior
原文传递
Mechanism and control of nonuniform phase transformation of microalloyed dual-phase steel during cooling process after hot rolling
19
作者 Wen-quan Sun Sheng-yi Yong +4 位作者 Tie-heng Yuan Chao Liu San-bao Zhou Rui-chun Guo Meng-xia Tang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期428-441,共14页
After cooling in the hot rolling process,the metallographic structure of microalloyed dual-phase steel is nonuniform along the rolling direction,while the thickness fluctuation of microalloyed dual-phase steel with a ... After cooling in the hot rolling process,the metallographic structure of microalloyed dual-phase steel is nonuniform along the rolling direction,while the thickness fluctuation of microalloyed dual-phase steel with a nonuniform metallographic structure will occur during cold rolling.The mechanism of nonuniform phase transformation of microalloyed dual-phase steels was studied during the cooling process after hot rolling,and the nonuniform phase transformation of microalloyed dual-phase steel was regulated during the cooling process after hot rolling through process optimization.First,the empirical equation of phase transformation temperature was measured by a dilatometer considering thermal expansion.Then,the phase field and temperature field of laminar cooling process were calculated to provide initial boundary conditions for the finite element model.After that,the coupling finite element model of the temperature phase transformation of the strip steel in coiling transportation process was established.The simulation results show that the different thermal contact conditions of the microalloyed dual-phase steel during coil transportation lead to uneven cooling of the coil,which leads to nonuniform transformation of the coil along the rolling direction.In addition,by prolonging the time interval from coiling to unloading,the phenomenon of nonuniform phase transformation of microalloyed dual-phase steel can be effectively controlled.The simulation results are applied to industrial production.The application results show that prolonging the time interval from coiling to unloading can effectively improve the nonuniform phase transformation of microalloyed dual-phase steel in the cooling process after hot rolling. 展开更多
关键词 Microalloyed dual-phase steel Thickness fluctuation COOLING Heat conduction Nonuniform phase transition Finite element method
原文传递
Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels 被引量:8
20
作者 Le-yu Zhou Dan Zhang Ya-zheng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期755-765,共11页
Uniaxial tension tests and hole-expansion tests were carried out to determine the influence of silicon on the microstructures, mechanical properties, and stretch-flangeability of conventional dual-phase steels. Compar... Uniaxial tension tests and hole-expansion tests were carried out to determine the influence of silicon on the microstructures, mechanical properties, and stretch-flangeability of conventional dual-phase steels. Compared to 0.03wt% silicon, the addition of 1.08wt% silicon induced the formation of finer ferrite grains (6.8μm ) and a higher carbon content of martensite (Cm≈ 0.32wt%). AS the silicon level increased, the initial strain-hardening rate (n value) and the uniform elongation increased, whereas the yield strength, yield ratio, and stretch-flangeability decreased. The microstructures were observed after hole-expansion tests. The results showed that low carbon content martensite (Cm ≈ 0.19wt%) can easily deform in coordination with ferrite. The relationship between the mechanical properties and stretch-flangeability indicated that the steel with large post-uniform elongation has good stretch-flangeability due to a closer plastic incom- patibility of the ferrite and martensite phases, which can effectively delay the production and decohesion of microvoids. 展开更多
关键词 dual-phase steel silicon content mechanical properties MICROSTRUCTURE strain hardening
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部