The variety,inner quality and surface quality of low-alloy spring steel wire rod for domestic automobile is summarized in detail.And according to commercial low-alloy spring steel wire rod variety, product quality lev...The variety,inner quality and surface quality of low-alloy spring steel wire rod for domestic automobile is summarized in detail.And according to commercial low-alloy spring steel wire rod variety, product quality level and its actual application situation on automobile supplied by present industrially developed country metallurgy enterprises,it is pointed that the variety of low-alloy spring steel wire rod for domestic automobile can't satisfy the requirements of automobile industry development,compare with overseas advanced technology,product quality has the following gaps:the first is that steel purity is low,the control level of non-metallic inclusions is not steady,there is often large grain difficult deforming non-deformation inclusions existing,the control level of steel purity has big difference,the level of large steel factory is high,but its steady has a large gap compare with foreign advanced level,not to mention small steel factory which research and development powder is low.The second is surface complete decarburization can' t be avoided completely.The third is that surface defects are more.The fourth is that composition segregation and structure segregation are not steady,steel wire can't be drawn normally when the segregation is serious. In all,the segregation of 55SiCrA is superior to 60Si2MnA obviously.The industrialization of domestic high level low-alloy spring steel wire rod can't seek quick success and instant benefits,independent innovation perseveringly must be adopted,the success may be reached after master core technologies and adopt the science way of step by step.展开更多
The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experiment...The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experimental parameters for thermal simulation were optimized, and the thermal simulating experiments were carded out on a Gleeblel500 thermal simulator. The process parameters for the manufacture were optimized after analysis of the data, and the productive experiments were performed after the water box in front of the no-twist blocks was reconstructed, to control the temperature of the loop layer. The results from the productive experiments showed that the cooling rate of 10-15℃/s was reasonable before phase transformation, about 5℃/s during phase transformation, and 600-620℃ was the suitable starting temperature for phase transformation. The ultimate strength of the Ф11.0 mm wire was increased to 1150-1170 MPa with an increase of 20-30 MPa, the percentage reduction of section was to 34%-36% with an increase of 1%-3% by testing the finished products after reconstruction.展开更多
To improve the quality of high carbon wire rods,combined electromagnetic stirring was introduced in the continuous casting of round billets with a diameter of 250mm at Tianjin Rockcheck Steel Group Co.In this paper,th...To improve the quality of high carbon wire rods,combined electromagnetic stirring was introduced in the continuous casting of round billets with a diameter of 250mm at Tianjin Rockcheck Steel Group Co.In this paper,the positioning of final electromagnetic stirring(F-EMS)was determined by nail-shooting method.Furthermore,the effect of mold electromagnetic stirring(M-EMS)on the macrostructure and internal defects in the round billets was investigated to find out the optimal operating parameters for continuous casting of SWRH 82B round billets.The results show the desirable positioning of F-EMS locates 9.7m below the mold level where the molten steel can be effectively driven by electromagnetic force and disperse central composition segregation.The shrinkage cavity is totally eliminated with the rotational M-EMS.The ratio and index of central composition segregation and center porosity can be reduced significantly. Furthermore,the equiaxed crystal ratio is considerably increased to 64%under 480A/3Hz M-EMS and 500A/10Hz F-EMS. Fine microstructure and mechanical property of wire rod are presented after optimization of combined electromagnetic stirring.Accordingly,the probability of occurrence of cup-cone fracture of wire rod is reduced dramatically.展开更多
文摘The variety,inner quality and surface quality of low-alloy spring steel wire rod for domestic automobile is summarized in detail.And according to commercial low-alloy spring steel wire rod variety, product quality level and its actual application situation on automobile supplied by present industrially developed country metallurgy enterprises,it is pointed that the variety of low-alloy spring steel wire rod for domestic automobile can't satisfy the requirements of automobile industry development,compare with overseas advanced technology,product quality has the following gaps:the first is that steel purity is low,the control level of non-metallic inclusions is not steady,there is often large grain difficult deforming non-deformation inclusions existing,the control level of steel purity has big difference,the level of large steel factory is high,but its steady has a large gap compare with foreign advanced level,not to mention small steel factory which research and development powder is low.The second is surface complete decarburization can' t be avoided completely.The third is that surface defects are more.The fourth is that composition segregation and structure segregation are not steady,steel wire can't be drawn normally when the segregation is serious. In all,the segregation of 55SiCrA is superior to 60Si2MnA obviously.The industrialization of domestic high level low-alloy spring steel wire rod can't seek quick success and instant benefits,independent innovation perseveringly must be adopted,the success may be reached after master core technologies and adopt the science way of step by step.
文摘The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experimental parameters for thermal simulation were optimized, and the thermal simulating experiments were carded out on a Gleeblel500 thermal simulator. The process parameters for the manufacture were optimized after analysis of the data, and the productive experiments were performed after the water box in front of the no-twist blocks was reconstructed, to control the temperature of the loop layer. The results from the productive experiments showed that the cooling rate of 10-15℃/s was reasonable before phase transformation, about 5℃/s during phase transformation, and 600-620℃ was the suitable starting temperature for phase transformation. The ultimate strength of the Ф11.0 mm wire was increased to 1150-1170 MPa with an increase of 20-30 MPa, the percentage reduction of section was to 34%-36% with an increase of 1%-3% by testing the finished products after reconstruction.
基金Item Sponsored by National Natural Science Foundation of China[No.50834009]the National Natural Science Foundation of China[No.51004038]+1 种基金Key Grant Project of China Ministry of Education(No.311014)the 111 Project of China(No.B07015)
文摘To improve the quality of high carbon wire rods,combined electromagnetic stirring was introduced in the continuous casting of round billets with a diameter of 250mm at Tianjin Rockcheck Steel Group Co.In this paper,the positioning of final electromagnetic stirring(F-EMS)was determined by nail-shooting method.Furthermore,the effect of mold electromagnetic stirring(M-EMS)on the macrostructure and internal defects in the round billets was investigated to find out the optimal operating parameters for continuous casting of SWRH 82B round billets.The results show the desirable positioning of F-EMS locates 9.7m below the mold level where the molten steel can be effectively driven by electromagnetic force and disperse central composition segregation.The shrinkage cavity is totally eliminated with the rotational M-EMS.The ratio and index of central composition segregation and center porosity can be reduced significantly. Furthermore,the equiaxed crystal ratio is considerably increased to 64%under 480A/3Hz M-EMS and 500A/10Hz F-EMS. Fine microstructure and mechanical property of wire rod are presented after optimization of combined electromagnetic stirring.Accordingly,the probability of occurrence of cup-cone fracture of wire rod is reduced dramatically.