A new type of high-chromium iron-base coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The coating has fine microstructure and is metallurgicall...A new type of high-chromium iron-base coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The coating has fine microstructure and is metallurgically bonded to the grade C steel substrate. The corrosion resistance of the coating in solutions of 0. 5 mol/L H2SO4 , 3.5 % NaCl and seawater was evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion- resisting properties of the constituting phase and the fine microstucture, the plasma clad coating exhibits excellent corrosion resistance in the water solutions of 0. 5 mol/L H2S04, 3.5% NaCl and seawater.展开更多
The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel.For this purpose,TiO2-3C and 3TiO2-4Al-3C-xFe(0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surfac...The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel.For this purpose,TiO2-3C and 3TiO2-4Al-3C-xFe(0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate.The mixtures and substrate were then melted using a gas tungsten arc cladding process.The results show that the martensite forms in the layer produced by the TiO2-3C mixture.However,ferrite-Fe3C-TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2-4Al-3C mixture.The addition of Fe to the TiO2-4Al-3C reactants with the content from 0 to 20wt%increases the volume fraction of particles,and a composite containing approximately 9vol%TiC and A12O3 particles forms.This composite substantially improves the substrate hardness.The mechanism by which Fe particles enhance the TiC + A12O3 volume fraction in the composite is determined.展开更多
文摘A new type of high-chromium iron-base coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The coating has fine microstructure and is metallurgically bonded to the grade C steel substrate. The corrosion resistance of the coating in solutions of 0. 5 mol/L H2SO4 , 3.5 % NaCl and seawater was evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion- resisting properties of the constituting phase and the fine microstucture, the plasma clad coating exhibits excellent corrosion resistance in the water solutions of 0. 5 mol/L H2S04, 3.5% NaCl and seawater.
文摘The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel.For this purpose,TiO2-3C and 3TiO2-4Al-3C-xFe(0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate.The mixtures and substrate were then melted using a gas tungsten arc cladding process.The results show that the martensite forms in the layer produced by the TiO2-3C mixture.However,ferrite-Fe3C-TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2-4Al-3C mixture.The addition of Fe to the TiO2-4Al-3C reactants with the content from 0 to 20wt%increases the volume fraction of particles,and a composite containing approximately 9vol%TiC and A12O3 particles forms.This composite substantially improves the substrate hardness.The mechanism by which Fe particles enhance the TiC + A12O3 volume fraction in the composite is determined.