Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colore...Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies.展开更多
AIM: To investigate if high-definition (HD) colonoscope with i-Scan gave a higher detection rate of mucosal le- sions vs standard white-light instruments. METHODS: Data were collected from the computer- ized datab...AIM: To investigate if high-definition (HD) colonoscope with i-Scan gave a higher detection rate of mucosal le- sions vs standard white-light instruments. METHODS: Data were collected from the computer- ized database of the endoscopy unit of our tertiary referral center. We retrospectively analyzed 1101 con- secutive colonoscopies that were performed over 1 year with standard white-light (n = 849) or HD+ with i-Scan (n = 252) instruments by four endoscopists, in an outpatient setting. Colonoscopy records included patients' main details and family history for colorectal cancer, indication for colonoscopy (screening, diagnos- tic or surveillance), type of instrument used (standard white-light or HD+ plus i-Scan), name of endoscopist and bowel preparation. Records for each procedure included whether the cecum was reached or not and the reason for failure, complications during or imme- diately after the procedure, and number, size, location and characteristics of the lesions. Polyps or protruding lesions were defined as sessile or pedunculated, and nonprotruding lesions were defined according to Paris classification. For each lesion, histological diagnosis was recorded. RESULTS: Eight hundred and forty-nine colonosco- pies were carried with the standard white-light video colonoscope and 252 with the HD+ plus i-Scan video colonoscope, The four endoscopists did 264, 300, 276 and 261 procedures, respectively; 21.6%, 24.0%, 21.7% and 24.1% of them with the HD+ plus i-Scan technique. There were no significant differences be- tween the four endoscopists in either the number of procedures done or the proportions of each imaging technique used. Both techniques detected one or more mucosal lesions in 522/1101 procedures (47.4%). The overall number of lesions recognized was 1266; 645 in the right colon and 621 in the left. A significantly higher number of colonoscopies recognized lesions in the HD+ plus i-Scan mode (171/252 = 67.9%) than with the standard white-light technique (408/849 = 48.1%) (P 〈 0.0001). HD+ with i-Scan colonoscopies identified more lesions than standard white-light imag- ing (459/252 and 807/849, P 〈 0.0001), in the right or left colon (mean :1: SD, 1.62±1.36 vs 1.33±0.73, P 〈 0.003 and 1.55±0.98 vs 1.17±0.93, P = 0.033), more lesions 〈 10 mm (P 〈 0.0001) or nonprotruding (P 〈 0.022), and flat polyps (P = 0.04). The cumulative mean number of lesions per procedure detected by the four endoscopists was significantly higher with HD+ with i-Scan than with standard white-light imaging (1.82 ± 2.89 vs 0.95± 1.35, P 〈 0.0001). CONCLUSION: HD imaging with i-Scan during the withdrawal phase of colonoscopy significantly increased the detection of colonic mucosal lesions, particularly small and nonprotruding polyps.展开更多
AIM:To examine performances regarding prediction of polyp histology using high-definition (HD) i-scan in a group of endoscopists with varying levels of experience. METHODS:We used a digital library of HD i-scan still ...AIM:To examine performances regarding prediction of polyp histology using high-definition (HD) i-scan in a group of endoscopists with varying levels of experience. METHODS:We used a digital library of HD i-scan still images, comprising twin pictures (surface enhancement and tone enhancement), collected at our university hospital. We defined endoscopic features of adenomatous and non-adenomatous polyps, according to the following parameters:color, surface pattern and vascular pattern. We familiarized the participating endoscopists on optical diagnosis of colorectal polyps using a 20-min didactic training session. All endoscopists were asked to evaluate an image set of 50 colorectal polyps with regard to polyp histology. We classified the diagnoses into high confidence (i.e., cases in which the endoscopist could assign a diagnosis with certainty) and low confidence diagnoses (i.e., cases in which the endoscopist preferred to send the polyp for formal histology). Mean sensitivity, specificity and accuracy per endoscopist/image were computed and differences between groups tested using independent-samples t tests. High vs low confidence diagnoses were compared using the pairedsamples t test. RESULTS:Eleven endoscopists without previous experience on optical diagnosis evaluated a total of 550 images (396 adenomatous, 154 non-adenomatous). Mean sensitivity, specificity and accuracy for diagnosing adenomas were 79.3%, 85.7% and 81.1%, respectively. No significant differences were found between gastroenterologists and trainees regarding performances of optical diagnosis (mean accuracy 78.0%vs 82.9%,P = 0.098). Diminutive lesions were predicted with a lower mean accuracy as compared to non-diminutive lesions (74.2% vs 93.1%, P = 0.008). A total of 446 (81.1%) diagnoses were made with high confidence. High confidence diagnoses corresponded to a significantly higher mean accuracy than low confidence diagnoses (84.0% vs 64.3%, P = 0.008). A total of 319 (58.0%) images were evaluated as having excellent quality. Considering excellent quality images in conjunction with high confidence diagnosis, overall accuracy increased to 92.8%. CONCLUSION:After a single training session, endoscopists with varying levels of experience can already provide optical diagnosis with an accuracy of 84.0%.展开更多
Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,...Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,highly smooth interactive holography remains a significant challenge due to the computational and display frame rate limitations.In this study,we introduced a dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates.To our knowledge,this is the first reported practical dynamic interactive metasurface holographic system.We spa-tially divided the metasurface device into multiple distinct channels,each projecting a reconstructed sub-pattern.The switching states of these channels were mapped to bitwise operations on a set of bit values,which avoids complex holo-gram computations,enabling an ultra-high computational frame rate.Our approach achieves a computational frame rate of 800 kHz and a display frame rate of 23 kHz on a low-power Raspberry Pi computational platform.According to this methodology,we demonstrated an interactive dynamic holographic Tetris game system that allows interactive gameplay,color display,and on-the-fly hologram creation.Our technology presents an inspiration for advanced dynamic meta-holography,which is promising for a broad range of applications including advanced human-computer interaction,real-time 3D visualization,and next-generation virtual and augmented reality systems.展开更多
There is an increasing demand for supporting high-quality real-time audiovisual services for the next generation wired and wireless networks. However, due to variety of bandwidths of different networks, it is a great ...There is an increasing demand for supporting high-quality real-time audiovisual services for the next generation wired and wireless networks. However, due to variety of bandwidths of different networks, it is a great challenge for deployment. In this paper, a novel high-definition (HD) video transmission system was proposed which depends upon reliable compound multicast protocols and QoS control over the various kinds of networks. This system detects client's network condition and assigns it to a proper proxy. Each proxy is capable of detecting network parameters and adaptively tuning such transport parameters as bit rate, video resolution, frame rate and QoS mechanisms to this condition. It also provides FEC error recovery under consideration of characteristics of MPEG4 video codec. Our simulation demonstrates that different network clients such as ADSL, CERNET, and CERNET2 can receive more video reliability with less delay.展开更多
High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ...Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.展开更多
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro...The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.展开更多
An efficient voxelization algorithm is presented for polygonal models by using the hardware support for the 2 D rasterization algorithm and the GPU programmable function to satisfy the volumetric display system. The v...An efficient voxelization algorithm is presented for polygonal models by using the hardware support for the 2 D rasterization algorithm and the GPU programmable function to satisfy the volumetric display system. The volume is sampled into slices by the rendering hardware and then slices are rasterated into a series of voxels. A composed buffer is used to record encoded voxels of the target volume to reduce the graphic memory requirement. In the algorithm, dynamic vertexes and index buffers are used to improve the voxelization efficiency. Experimental results show that the algorithm is efficient for a true 3-D display system.展开更多
A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system de...A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.展开更多
In order to obtain the life information of the vacuum fluorescent display (VFD) in a short time, a model of constant stress accelerated life tests (CSALT) is established with its filament temperature increased, an...In order to obtain the life information of the vacuum fluorescent display (VFD) in a short time, a model of constant stress accelerated life tests (CSALT) is established with its filament temperature increased, and four constant stress tests are conducted. The Weibull function is applied to describe the life distribution of the VFD, and the maximum likelihood estimation (MLE) and its iterative flow chart are used to calculate the shape parameters and the scale parameters. Furthermore, the accelerated life equation is determined by the least square method, the Kolmogorov-Smirnov test is performed to verify whether the VFD life meets the Weibull distribution or not, and selfdeveloped software is employed to predict the average life and the reliable life. Statistical data analysis results demonstrate that the test plans are feasible and versatile, that the VFD life follows the Weibull distribution, and that the VFD accelerated model satisfies the linear Arrhenius equation. The proposed method and the estimated life information of the VFD can provide some significant guideline to its manufacturers and customers.展开更多
This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In thi...This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In this system, the operator manipulates an object in a virtual environment by using the 5-DOF master arm. When contacting with the virtual object, the contact force can be calculated and shown in the graphic interface. The contact response and deformation of the virtual object, which are usually called haptic rendering, also can be performed. The study supplies an approach to improve the operator’s immersion and can be used in many tele-robot control fields.展开更多
The visual features of continuous pseudocolor encoding is discussed and the optimiz- ing design algorithm of continuous pseudocolor scale is derived.The algorithm is restricting the varying range and direction of ligh...The visual features of continuous pseudocolor encoding is discussed and the optimiz- ing design algorithm of continuous pseudocolor scale is derived.The algorithm is restricting the varying range and direction of lightness,hue and saturation according to correlation and naturalness,automatically calculating the chromaticity coordinates of nodes in uniform color space to get the longest length of scale path,then interpolating points between nodes in equal color differences to obtain continuous pseudocolor scale with visual uniformity.When it was applied to the pseudocolor encoding of thermal image displays,the results showed that the correlation and the naturalness of original images and cognitive characteristics of target pattern were reserved well;the dynamic range of visual perception and the amount of visual information increased obviously;the contrast sensitivity of target identification improved;and the blindness of scale design were avoided.展开更多
Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an ...Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.展开更多
Under drought stress, adventitious roots of Alternanthera philoxeroides seedlings will grow long thick fleshy roots, which are assumed to improve performance of the plant by more efficient reservation and absorption o...Under drought stress, adventitious roots of Alternanthera philoxeroides seedlings will grow long thick fleshy roots, which are assumed to improve performance of the plant by more efficient reservation and absorption of water from deep soil layers. In this study, the differential display technique was used to clone morphogenesis-related genes from A. philoxeroides roots treated with drought, which would help to improve crop plants' drought-tolerance by transgenic method; by 15 pairs of primer combinations, twenty putative drought up-regulated gene segments induced by drought were obtained; and one of them was confirmed by reverse northern blot, and subsequently cloned and sequenced. A homologous analysis revealed that it might be a new sequence. Semi-quantitative RT-PCR analysis showed that the gene was up-regulated by drought and salt stress.展开更多
A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based o...A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based on the measured temporal light properties of the display for each gray level and each phosphor. Both the effect of subfield arrangement and phosphor decay are involved. A novel algorithm is proposed to improve the calculation speed. The simulation model manages to predict the appearance of the motion image perceived by a human with a still image. The results are validated by a set of perceptual evaluation experiments. This rapid and accurate prediction of motion artifacts enables objective characterization of the PDP performance in this aspect.展开更多
This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge det...This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge detection process. The way of marking edge point coordinates and stability of moving image also is analyzed. The method reforms the conventional design of the 2-D vision detection system. Moreover,it facilitates the design of the systematic mechanical construction,is convenient to compile instrument systemsoftware,and realizes to detect and track display image simultaneously. By the work,the tool detection system is improved to practical application.展开更多
To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimu...To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimuli were displayed on a color monitor and the perceived color shifts of test targets induced by its surrounds were measured using binocular matching method while systematically varying hue difference between target and surround. When the hue difference increased, the magnitude of color shift in test target decreased, but the deflection angle of color shift vector from constant hue line increased. Regression analyses of experimental data indicated that the relationship between hue angle difference and the magnitude of perceived color shifts could be described quantitatively by an exponential function, and a linear function could describe quantitative relationship between hue angle difference and deflection angle of color shift vector from constant hue line.展开更多
基金supported by the Beijing Municipal Science and Technology Commission(BMSTC,No.D171100002617001).
文摘Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies.
文摘AIM: To investigate if high-definition (HD) colonoscope with i-Scan gave a higher detection rate of mucosal le- sions vs standard white-light instruments. METHODS: Data were collected from the computer- ized database of the endoscopy unit of our tertiary referral center. We retrospectively analyzed 1101 con- secutive colonoscopies that were performed over 1 year with standard white-light (n = 849) or HD+ with i-Scan (n = 252) instruments by four endoscopists, in an outpatient setting. Colonoscopy records included patients' main details and family history for colorectal cancer, indication for colonoscopy (screening, diagnos- tic or surveillance), type of instrument used (standard white-light or HD+ plus i-Scan), name of endoscopist and bowel preparation. Records for each procedure included whether the cecum was reached or not and the reason for failure, complications during or imme- diately after the procedure, and number, size, location and characteristics of the lesions. Polyps or protruding lesions were defined as sessile or pedunculated, and nonprotruding lesions were defined according to Paris classification. For each lesion, histological diagnosis was recorded. RESULTS: Eight hundred and forty-nine colonosco- pies were carried with the standard white-light video colonoscope and 252 with the HD+ plus i-Scan video colonoscope, The four endoscopists did 264, 300, 276 and 261 procedures, respectively; 21.6%, 24.0%, 21.7% and 24.1% of them with the HD+ plus i-Scan technique. There were no significant differences be- tween the four endoscopists in either the number of procedures done or the proportions of each imaging technique used. Both techniques detected one or more mucosal lesions in 522/1101 procedures (47.4%). The overall number of lesions recognized was 1266; 645 in the right colon and 621 in the left. A significantly higher number of colonoscopies recognized lesions in the HD+ plus i-Scan mode (171/252 = 67.9%) than with the standard white-light technique (408/849 = 48.1%) (P 〈 0.0001). HD+ with i-Scan colonoscopies identified more lesions than standard white-light imag- ing (459/252 and 807/849, P 〈 0.0001), in the right or left colon (mean :1: SD, 1.62±1.36 vs 1.33±0.73, P 〈 0.003 and 1.55±0.98 vs 1.17±0.93, P = 0.033), more lesions 〈 10 mm (P 〈 0.0001) or nonprotruding (P 〈 0.022), and flat polyps (P = 0.04). The cumulative mean number of lesions per procedure detected by the four endoscopists was significantly higher with HD+ with i-Scan than with standard white-light imaging (1.82 ± 2.89 vs 0.95± 1.35, P 〈 0.0001). CONCLUSION: HD imaging with i-Scan during the withdrawal phase of colonoscopy significantly increased the detection of colonic mucosal lesions, particularly small and nonprotruding polyps.
文摘AIM:To examine performances regarding prediction of polyp histology using high-definition (HD) i-scan in a group of endoscopists with varying levels of experience. METHODS:We used a digital library of HD i-scan still images, comprising twin pictures (surface enhancement and tone enhancement), collected at our university hospital. We defined endoscopic features of adenomatous and non-adenomatous polyps, according to the following parameters:color, surface pattern and vascular pattern. We familiarized the participating endoscopists on optical diagnosis of colorectal polyps using a 20-min didactic training session. All endoscopists were asked to evaluate an image set of 50 colorectal polyps with regard to polyp histology. We classified the diagnoses into high confidence (i.e., cases in which the endoscopist could assign a diagnosis with certainty) and low confidence diagnoses (i.e., cases in which the endoscopist preferred to send the polyp for formal histology). Mean sensitivity, specificity and accuracy per endoscopist/image were computed and differences between groups tested using independent-samples t tests. High vs low confidence diagnoses were compared using the pairedsamples t test. RESULTS:Eleven endoscopists without previous experience on optical diagnosis evaluated a total of 550 images (396 adenomatous, 154 non-adenomatous). Mean sensitivity, specificity and accuracy for diagnosing adenomas were 79.3%, 85.7% and 81.1%, respectively. No significant differences were found between gastroenterologists and trainees regarding performances of optical diagnosis (mean accuracy 78.0%vs 82.9%,P = 0.098). Diminutive lesions were predicted with a lower mean accuracy as compared to non-diminutive lesions (74.2% vs 93.1%, P = 0.008). A total of 446 (81.1%) diagnoses were made with high confidence. High confidence diagnoses corresponded to a significantly higher mean accuracy than low confidence diagnoses (84.0% vs 64.3%, P = 0.008). A total of 319 (58.0%) images were evaluated as having excellent quality. Considering excellent quality images in conjunction with high confidence diagnosis, overall accuracy increased to 92.8%. CONCLUSION:After a single training session, endoscopists with varying levels of experience can already provide optical diagnosis with an accuracy of 84.0%.
基金supports from National Natural Science Foundation of China (Grant No.62205117,52275429)National Key Research and Development Program of China (Grant No.2021YFF0502700)+3 种基金Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)West Light Foundation of the Chinese Academy of Sciences (Grant No.xbzg-zdsys-202206)Knowledge Innovation Program of Wuhan-Shuguang,Innovation project of Optics Valley Laboratory (Grant No.OVL2021ZD002)Hubei Provincial Natural Science Foundation of China (Grant No.2022CFB792).
文摘Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,highly smooth interactive holography remains a significant challenge due to the computational and display frame rate limitations.In this study,we introduced a dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates.To our knowledge,this is the first reported practical dynamic interactive metasurface holographic system.We spa-tially divided the metasurface device into multiple distinct channels,each projecting a reconstructed sub-pattern.The switching states of these channels were mapped to bitwise operations on a set of bit values,which avoids complex holo-gram computations,enabling an ultra-high computational frame rate.Our approach achieves a computational frame rate of 800 kHz and a display frame rate of 23 kHz on a low-power Raspberry Pi computational platform.According to this methodology,we demonstrated an interactive dynamic holographic Tetris game system that allows interactive gameplay,color display,and on-the-fly hologram creation.Our technology presents an inspiration for advanced dynamic meta-holography,which is promising for a broad range of applications including advanced human-computer interaction,real-time 3D visualization,and next-generation virtual and augmented reality systems.
文摘There is an increasing demand for supporting high-quality real-time audiovisual services for the next generation wired and wireless networks. However, due to variety of bandwidths of different networks, it is a great challenge for deployment. In this paper, a novel high-definition (HD) video transmission system was proposed which depends upon reliable compound multicast protocols and QoS control over the various kinds of networks. This system detects client's network condition and assigns it to a proper proxy. Each proxy is capable of detecting network parameters and adaptively tuning such transport parameters as bit rate, video resolution, frame rate and QoS mechanisms to this condition. It also provides FEC error recovery under consideration of characteristics of MPEG4 video codec. Our simulation demonstrates that different network clients such as ADSL, CERNET, and CERNET2 can receive more video reliability with less delay.
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
基金supported by the National Natural Science Foundation of China(51835005,52273237)the National Key R&D Program of China(2022YFF1500400)。
文摘Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.
基金supported by the Science and Technology Program of Shenzhen(Grant Nos.SGDX20201103095607022 and JCYJ20210324095003011)supported by the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province.
文摘The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.
文摘An efficient voxelization algorithm is presented for polygonal models by using the hardware support for the 2 D rasterization algorithm and the GPU programmable function to satisfy the volumetric display system. The volume is sampled into slices by the rendering hardware and then slices are rasterated into a series of voxels. A composed buffer is used to record encoded voxels of the target volume to reduce the graphic memory requirement. In the algorithm, dynamic vertexes and index buffers are used to improve the voxelization efficiency. Experimental results show that the algorithm is efficient for a true 3-D display system.
文摘A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.
基金Undergraduate Education High land Construction Project of Shanghaithe Key Course Construction of Shanghai Education Committee (No.20075302)the Key Technology R&D Program of Shanghai Municipality (No.08160510600)
文摘In order to obtain the life information of the vacuum fluorescent display (VFD) in a short time, a model of constant stress accelerated life tests (CSALT) is established with its filament temperature increased, and four constant stress tests are conducted. The Weibull function is applied to describe the life distribution of the VFD, and the maximum likelihood estimation (MLE) and its iterative flow chart are used to calculate the shape parameters and the scale parameters. Furthermore, the accelerated life equation is determined by the least square method, the Kolmogorov-Smirnov test is performed to verify whether the VFD life meets the Weibull distribution or not, and selfdeveloped software is employed to predict the average life and the reliable life. Statistical data analysis results demonstrate that the test plans are feasible and versatile, that the VFD life follows the Weibull distribution, and that the VFD accelerated model satisfies the linear Arrhenius equation. The proposed method and the estimated life information of the VFD can provide some significant guideline to its manufacturers and customers.
文摘This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In this system, the operator manipulates an object in a virtual environment by using the 5-DOF master arm. When contacting with the virtual object, the contact force can be calculated and shown in the graphic interface. The contact response and deformation of the virtual object, which are usually called haptic rendering, also can be performed. The study supplies an approach to improve the operator’s immersion and can be used in many tele-robot control fields.
文摘The visual features of continuous pseudocolor encoding is discussed and the optimiz- ing design algorithm of continuous pseudocolor scale is derived.The algorithm is restricting the varying range and direction of lightness,hue and saturation according to correlation and naturalness,automatically calculating the chromaticity coordinates of nodes in uniform color space to get the longest length of scale path,then interpolating points between nodes in equal color differences to obtain continuous pseudocolor scale with visual uniformity.When it was applied to the pseudocolor encoding of thermal image displays,the results showed that the correlation and the naturalness of original images and cognitive characteristics of target pattern were reserved well;the dynamic range of visual perception and the amount of visual information increased obviously;the contrast sensitivity of target identification improved;and the blindness of scale design were avoided.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2007AA01Z338)the National Science Foundation for Post-doctoral Scientists of China(20080441051)the Jiangsu Province Science Foundation for Post-doctoral Scientists(0802014c)~~
文摘Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.
文摘Under drought stress, adventitious roots of Alternanthera philoxeroides seedlings will grow long thick fleshy roots, which are assumed to improve performance of the plant by more efficient reservation and absorption of water from deep soil layers. In this study, the differential display technique was used to clone morphogenesis-related genes from A. philoxeroides roots treated with drought, which would help to improve crop plants' drought-tolerance by transgenic method; by 15 pairs of primer combinations, twenty putative drought up-regulated gene segments induced by drought were obtained; and one of them was confirmed by reverse northern blot, and subsequently cloned and sequenced. A homologous analysis revealed that it might be a new sequence. Semi-quantitative RT-PCR analysis showed that the gene was up-regulated by drought and salt stress.
文摘A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based on the measured temporal light properties of the display for each gray level and each phosphor. Both the effect of subfield arrangement and phosphor decay are involved. A novel algorithm is proposed to improve the calculation speed. The simulation model manages to predict the appearance of the motion image perceived by a human with a still image. The results are validated by a set of perceptual evaluation experiments. This rapid and accurate prediction of motion artifacts enables objective characterization of the PDP performance in this aspect.
文摘This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge detection process. The way of marking edge point coordinates and stability of moving image also is analyzed. The method reforms the conventional design of the 2-D vision detection system. Moreover,it facilitates the design of the systematic mechanical construction,is convenient to compile instrument systemsoftware,and realizes to detect and track display image simultaneously. By the work,the tool detection system is improved to practical application.
文摘To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimuli were displayed on a color monitor and the perceived color shifts of test targets induced by its surrounds were measured using binocular matching method while systematically varying hue difference between target and surround. When the hue difference increased, the magnitude of color shift in test target decreased, but the deflection angle of color shift vector from constant hue line increased. Regression analyses of experimental data indicated that the relationship between hue angle difference and the magnitude of perceived color shifts could be described quantitatively by an exponential function, and a linear function could describe quantitative relationship between hue angle difference and deflection angle of color shift vector from constant hue line.