Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels usin...Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.展开更多
Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel...Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.展开更多
A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of ...A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.展开更多
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me...Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.展开更多
Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 49...Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.展开更多
The access to high-density hydrocarbon fuels from biomass for the reduction of dependence on fossil resources has been a research highlight in recent years. It is well known that cycloalkanes are the components of fue...The access to high-density hydrocarbon fuels from biomass for the reduction of dependence on fossil resources has been a research highlight in recent years. It is well known that cycloalkanes are the components of fuels with higher energy density than straight or branched alkanes. Herein, we developed a new catalytic pattern to synthesize dimethyltetradecahydroanthracenes(DMTHA), a kind of tricyclic alkane, from biomass-derived isoprene and p-benzoquinone via a cascade Diels-Alder reaction followed by a hydrodeoxygenation reaction. Vanadium supported on titanium dioxide(V-TiO_(2)) was applied to catalyze the cascade Diels-Alder reaction and it was disclosed that V with appropriate V^(4+)/V^(5+) ratio on the surface of TiO_(2) could activate quinones. Experimental tests showed that the heating value of final products was up to 45.7 MJ/kg. The development of new high-density fuel molecules is a long-term trend for the future renewable and sustainable fuel energy application.展开更多
Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in ...Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in biofuels production infrastructure. Concerns over the environmental impacts of large-scale biofuels production combined with tariff barriers have greatly restricted the global trade in biofuels. First-generation biofuels produced either by fermentation of sugars from maize or sugarcane (ethanol) or transesterification of triglycerides (biodiesel) presently contribute less than 4% of terrestrial transportation fuel demand and techno-economic modelling foresees this only slowly increasing by 2035. With internal combustion and diesel engines widely anticipated as being phased out in favour of electric power for motor vehicles, a much-reduced market demand for biofuels is likely if global demand for all liquid fuels declines by 2050. However, second-generation, thermochemically produced and biomass-derived fuels (renewable diesel, marine oils and sustainable aviation fuel) have much higher blend limits;combined with policies to decarbonise the aviation and marine industries, major new markets for these products in terrestrial, marine and aviation sectors may emerge in the second half of the 21st century.展开更多
The development of China’s aviation industry is accelerating,especially in terms of national political protection,military security and economic security.In the aviation industry’s aviation fuel system management,sa...The development of China’s aviation industry is accelerating,especially in terms of national political protection,military security and economic security.In the aviation industry’s aviation fuel system management,safety management is an important content.This paper focuses on the safety management of aviation fuel systems.展开更多
Aviation fuel is in great demand globally. The increased demand and high price for energy sources are driving efforts to convert natural non-renewable organic compounds into useful hydrocarbon fuel materials such as i...Aviation fuel is in great demand globally. The increased demand and high price for energy sources are driving efforts to convert natural non-renewable organic compounds into useful hydrocarbon fuel materials such as in form of aviation fuel. Alternate sources to these non-renewable hydrocarbon fuels are important and necessary. Much of these alternative sources are focused on biomass however, there are strong benefits of deriving fuels from waste plastic materials. Thermal processes can be used to convert waste plastics into hydrocarbon fuels like aviation fuel, which have unlimited applications in airline industries, as well as in transportation and power generation industries. These thermal processes are used to break down the long carbon chains found in plastics into the shorter chains in a temperature range from 300-450 ℃. This method has been carried out in succession in previous experiments. This simple and economically viable process has been developed to convert the hydrocarbon polymers of waste plastics into the short and medium chain hydrocarbons of liquid fuels. Based on the initial characterization, a fractionated portion of the developed fuel shows properties similar to some of the commercially available aviation fuels.展开更多
Aviation biofuels have the potential to reduce greenhouse gas emissions and improve engine performance. Theaim of this study was to assess the suitability of various jet biofuel blends for use in a ZF850 jet engine. T...Aviation biofuels have the potential to reduce greenhouse gas emissions and improve engine performance. Theaim of this study was to assess the suitability of various jet biofuel blends for use in a ZF850 jet engine. The effects of theblends on engine performance were assessed under various thrust output settings with respect to the thrust, thrust-specificfuel consumption, emission characteristics, exhaust gas temperature, acceleration and deceleration performance. Blendingwith catalytic hydrothermolysis jet (CHJ) fuel improved the combustion efficiency by reducing carbon monoxide andunburned hydrocarbon emissions and markedly reducing PM2.5 emissions. However, a slight reduction in thrust output wasobserved. Throughout the entire range of thrust output settings, the 10% CHJ fuel blend provided higher thrust, lower thrustspecificfuel consumption, and lower exhaust gas temperature. The CHJ fuel blends exhibited no significant effects on thedeceleration performance, while the 5% and 15% blends caused a 0.4 s delay in the time required for complete acceleration.Global sensitivity analysis was conducted to better understand the effects of the fuel blends on engine performance andemission characteristics. This analysis identified the critical parameters of engine performance as engine-influence and fuelinfluenceparameters and engine-influence and fuel-less influence parameters. The overall engine efficiency benefit was nonlinearlyrelated to the blend ratio and thrust output. The results indicate that the use of CHJ fuel blends can improve engineefficiency if they comply with the engine design and control regulations.展开更多
The effects of composition of bio-jet fuels on freezing point,smoke point,distillation range,and flash point are investigated.Performance tests using petroleum-based jet fuel with different compositions are conducted ...The effects of composition of bio-jet fuels on freezing point,smoke point,distillation range,and flash point are investigated.Performance tests using petroleum-based jet fuel with different compositions are conducted in line with standard test specifications.The results show that alkylbenzenes reduce the freezing point,with the amount of reduction becoming greater with increasing alkylbenzene content.For a 25%content of the C_8 aromatic xylene,the freezing point is in the range from-55.5℃to-60.1℃.The presence of monocyclic aromatic hydrocarbons leads to an increase in carbon deposition performance,especially when alkyl side chains are present.With cycloalkanes,carbon deposition is reduced,although alkyl side chains weaken this beneficial effect.Isomeric hydrocarbons are beneficial in reducing carbon deposition.The ASTM D7566 specifications for the distillation range are based on the average properties of petroleum-based aviation fuel,and if all the parameters governing the distillation range of an alternative jet fuel are at their lower limits,it is necessary to check whether other performance standards are met.Light components affect the flash point greatly,with 5%of benzene reducing the flash point by 17℃,whereas intermediate components(e.g.,xylene and ethylbenzene)and heavier components have less impact.Although alcohols provide better combustion performance,their content must be strictly limited owing to their effects in reducing the flash point.展开更多
基金the support from National Key Research and Development Program of China(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.
基金supported by the National Key Research and Development Program(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.
文摘A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.
文摘Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.
文摘Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.
基金the National Key R&D Program of China (2019YFC1905303, 2018YFB1501600)the National Natural Science Foundation of China (21908218, 21872139)DICP Grant (I201944) for providing financial support to do this scientific research。
文摘The access to high-density hydrocarbon fuels from biomass for the reduction of dependence on fossil resources has been a research highlight in recent years. It is well known that cycloalkanes are the components of fuels with higher energy density than straight or branched alkanes. Herein, we developed a new catalytic pattern to synthesize dimethyltetradecahydroanthracenes(DMTHA), a kind of tricyclic alkane, from biomass-derived isoprene and p-benzoquinone via a cascade Diels-Alder reaction followed by a hydrodeoxygenation reaction. Vanadium supported on titanium dioxide(V-TiO_(2)) was applied to catalyze the cascade Diels-Alder reaction and it was disclosed that V with appropriate V^(4+)/V^(5+) ratio on the surface of TiO_(2) could activate quinones. Experimental tests showed that the heating value of final products was up to 45.7 MJ/kg. The development of new high-density fuel molecules is a long-term trend for the future renewable and sustainable fuel energy application.
文摘Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in biofuels production infrastructure. Concerns over the environmental impacts of large-scale biofuels production combined with tariff barriers have greatly restricted the global trade in biofuels. First-generation biofuels produced either by fermentation of sugars from maize or sugarcane (ethanol) or transesterification of triglycerides (biodiesel) presently contribute less than 4% of terrestrial transportation fuel demand and techno-economic modelling foresees this only slowly increasing by 2035. With internal combustion and diesel engines widely anticipated as being phased out in favour of electric power for motor vehicles, a much-reduced market demand for biofuels is likely if global demand for all liquid fuels declines by 2050. However, second-generation, thermochemically produced and biomass-derived fuels (renewable diesel, marine oils and sustainable aviation fuel) have much higher blend limits;combined with policies to decarbonise the aviation and marine industries, major new markets for these products in terrestrial, marine and aviation sectors may emerge in the second half of the 21st century.
文摘The development of China’s aviation industry is accelerating,especially in terms of national political protection,military security and economic security.In the aviation industry’s aviation fuel system management,safety management is an important content.This paper focuses on the safety management of aviation fuel systems.
文摘Aviation fuel is in great demand globally. The increased demand and high price for energy sources are driving efforts to convert natural non-renewable organic compounds into useful hydrocarbon fuel materials such as in form of aviation fuel. Alternate sources to these non-renewable hydrocarbon fuels are important and necessary. Much of these alternative sources are focused on biomass however, there are strong benefits of deriving fuels from waste plastic materials. Thermal processes can be used to convert waste plastics into hydrocarbon fuels like aviation fuel, which have unlimited applications in airline industries, as well as in transportation and power generation industries. These thermal processes are used to break down the long carbon chains found in plastics into the shorter chains in a temperature range from 300-450 ℃. This method has been carried out in succession in previous experiments. This simple and economically viable process has been developed to convert the hydrocarbon polymers of waste plastics into the short and medium chain hydrocarbons of liquid fuels. Based on the initial characterization, a fractionated portion of the developed fuel shows properties similar to some of the commercially available aviation fuels.
基金the National Key Research and Development Program of China(2018YFB1501505).
文摘Aviation biofuels have the potential to reduce greenhouse gas emissions and improve engine performance. Theaim of this study was to assess the suitability of various jet biofuel blends for use in a ZF850 jet engine. The effects of theblends on engine performance were assessed under various thrust output settings with respect to the thrust, thrust-specificfuel consumption, emission characteristics, exhaust gas temperature, acceleration and deceleration performance. Blendingwith catalytic hydrothermolysis jet (CHJ) fuel improved the combustion efficiency by reducing carbon monoxide andunburned hydrocarbon emissions and markedly reducing PM2.5 emissions. However, a slight reduction in thrust output wasobserved. Throughout the entire range of thrust output settings, the 10% CHJ fuel blend provided higher thrust, lower thrustspecificfuel consumption, and lower exhaust gas temperature. The CHJ fuel blends exhibited no significant effects on thedeceleration performance, while the 5% and 15% blends caused a 0.4 s delay in the time required for complete acceleration.Global sensitivity analysis was conducted to better understand the effects of the fuel blends on engine performance andemission characteristics. This analysis identified the critical parameters of engine performance as engine-influence and fuelinfluenceparameters and engine-influence and fuel-less influence parameters. The overall engine efficiency benefit was nonlinearlyrelated to the blend ratio and thrust output. The results indicate that the use of CHJ fuel blends can improve engineefficiency if they comply with the engine design and control regulations.
基金The financial support by the Scientific research project of Tianjin Education Commission (2020KJ022)the Fundamental Research Funds for the Central Universities (Civil Aviation Universion of China,3122023048)。
文摘The effects of composition of bio-jet fuels on freezing point,smoke point,distillation range,and flash point are investigated.Performance tests using petroleum-based jet fuel with different compositions are conducted in line with standard test specifications.The results show that alkylbenzenes reduce the freezing point,with the amount of reduction becoming greater with increasing alkylbenzene content.For a 25%content of the C_8 aromatic xylene,the freezing point is in the range from-55.5℃to-60.1℃.The presence of monocyclic aromatic hydrocarbons leads to an increase in carbon deposition performance,especially when alkyl side chains are present.With cycloalkanes,carbon deposition is reduced,although alkyl side chains weaken this beneficial effect.Isomeric hydrocarbons are beneficial in reducing carbon deposition.The ASTM D7566 specifications for the distillation range are based on the average properties of petroleum-based aviation fuel,and if all the parameters governing the distillation range of an alternative jet fuel are at their lower limits,it is necessary to check whether other performance standards are met.Light components affect the flash point greatly,with 5%of benzene reducing the flash point by 17℃,whereas intermediate components(e.g.,xylene and ethylbenzene)and heavier components have less impact.Although alcohols provide better combustion performance,their content must be strictly limited owing to their effects in reducing the flash point.