期刊文献+
共找到15,952篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of drip and flood irrigation on carbon dioxide exchange and crop growth in the maize ecosystem in the Hetao Irrigation District,China 被引量:1
1
作者 LI Chaoqun HAN Wenting PENG Manman 《Journal of Arid Land》 SCIE CSCD 2024年第2期282-297,共16页
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho... Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously. 展开更多
关键词 carbon dioxide exchange maize growth drip irrigation harvest index net primary productivity Hetao Irrigation District
下载PDF
Carbon dioxide enrichment affected flower numbers transiently and increased successful post-pollination development stably but without altering final acorn production in mature pedunculate oak (Quercus robur L.)
2
作者 Ryan McClory Richard H.Ellis +5 位作者 Martin Lukac Jo Clark Carolina Mayoral Kris M.Hart Andrew R.G.Plackett A.Rob MacKenzie 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期1-12,共12页
Acorn production in oak(Quercus spp.)shows considerable inter-annual variation,known as masting,which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commer... Acorn production in oak(Quercus spp.)shows considerable inter-annual variation,known as masting,which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commercial tree planting each year.Anthropogenic emissions of greenhouse gases have been very widely reported to influence plant growth and seed or fruit size and quantity via the‘fertilisation effect’that leads to enhanced photosynthesis.To examine if acorn production in mature woodland communities will be affected by further increase in CO_(2),the contents of litter traps from a Free Air Carbon Enrichment(FACE)experiment in deciduous woodland in central England were analysed for numbers of flowers and acorns of pedunculate oak(Quercus robur L.)at different stages of development and their predation levels under ambient and elevated CO_(2) concentrations.Inter-annual variation in acorn numbers was considerable and cyclical between 2015 and 2021,with the greatest numbers of mature acorns in 2015,2017 and 2020 but almost none in 2018.The numbers of flowers,enlarged cups,immature acorns,empty acorn cups,and galls in the litter traps also varied amongst years;comparatively high numbers of enlarged cups were recorded in 2018,suggesting Q.robur at this site is a fruit maturation masting species(i.e.,the extent of abortion of pollinated flowers during acorn development affects mature acorn numbers greatly).Raising the atmospheric CO_(2) concentration by 150μL L^(−1),from early 2017,increased the numbers of immature acorns,and all acorn evidence(empty cups+immature acorns+mature acorns)detected in the litter traps compared to ambient controls by 2021,but did not consistently affect the numbers of flowers,enlarged cups,empty cups,or mature acorns.The number of flowers in the elevated CO_(2) plots’litter traps was greater in 2018 than 2017,one year after CO_(2) enrichment began,whereas numbers declined in ambient plots.Enrichment with CO_(2) also increased the number of oak knopper galls(Andricus quercuscalicis Burgsdorf).We conclude that elevated CO_(2) increased the occurrence of acorns developing from flowers,but the putative benefit to mature acorn numbers may have been hidden by excessive pre-and/or post-dispersal predation.There was no evidence that elevated CO_(2) altered masting behaviour. 展开更多
关键词 Quercus robur L. ACORNS MASTING Pedunculate oak carbon dioxide
下载PDF
Chemico-biological conversion of carbon dioxide
3
作者 Liangwei Hu Junzhu Yang +3 位作者 Qi Xia Jin Zhang Hongxin Zhao Yuan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期371-387,I0009,共18页
The unabated carbon dioxide(CO_(2))emission into the atmosphere has exacerbated global climate change,resulting in extreme weather events,biodiversity loss,and an intensified greenhouse effect.To address these challen... The unabated carbon dioxide(CO_(2))emission into the atmosphere has exacerbated global climate change,resulting in extreme weather events,biodiversity loss,and an intensified greenhouse effect.To address these challenges and work toward carbon(C)neutrality and reduced CO_(2)emissions,the capture and utilization of CO_(2)have become imperative in both scientific research and industry.One cutting-edge approach to achieving efficient catalytic performance involves integrating green bioconversion and chemical conversion.This innovative strategy offers several advantages,including environmental friendliness,high efficiency,and multi-selectivity.This study provides a comprehensive review of existing technical routes for carbon sequestration(CS)and introduces two novel CS pathways:the electrochemicalbiological hybrid and artificial photosynthesis systems.It also thoroughly examines the synthesis of valuable Cnproducts from the two CS systems employing different catalysts and biocatalysts.As both systems heavily rely on electron transfer,direct and mediated electron transfer has been discussed and summarized in detail.Additionally,this study explores the conditions suitable for different catalysts and assesses the strengths and weaknesses of biocatalysts.We also explored the biocompatibility of the electrode materials and developed novel materials.These materials were specifically engineered to combine with enzymes or microbial cells to solve the biocompatibility problem,while improving the electron transfer efficiency of both.Furthermore,this review summarizes the relevant systems developed in recent years for manufacturing different products,along with their respective production efficiencies,providing a solid database for development in this direction.The novel chemical-biological combination proposed herein holds great promise for the future conversion of CO_(2)into advanced organic compounds.Additionally,it offers exciting prospects for utilizing CO_(2)in synthesizing a wide range of industrial products.Ultimately,the present study provides a unique perspective for achieving the vital goals of“peak shaving”and C-neutrality,contributing significantly to our collective efforts to combat climate change and its associated challenges. 展开更多
关键词 carbon dioxide Bioelectric synthesis Artificial photosynthesis Synthetic product
下载PDF
CAS-ESM2.0 Dataset for the Carbon Dioxide Removal Model Intercomparison Project(CDRMIP)
4
作者 Jiangbo JIN Duoying JI +9 位作者 Xiao DONG Kece FEI Run GUO Juanxiong HE Yi YU Zhaoyang CHAI He ZHANG Dongling ZHANG Kangjun CHEN Qingcun ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期989-1000,共12页
Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation stra... Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature. 展开更多
关键词 CAS-ESM2.0 CDRMIP carbon dioxide removal AMOC temperature PRECIPITATION sea surface height
下载PDF
Simultaneous Degradation, Dehalogenation, and Detoxification of Halogenated Antibiotics by Carbon Dioxide Radical Anions
5
作者 Yanzhou Ding Xia Yu +8 位作者 Shuguang Lyu Huajun Zhen Wentao Zhao Cheng Peng Jiaxi Wang Yiwen Zhu Chengfei Zhu Lei Zhou Qian Sui 《Engineering》 SCIE EI CAS CSCD 2024年第6期78-86,共9页
Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number ... Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment. 展开更多
关键词 carbon dioxide radical anions Advanced reduction processes Halogenated antibiotics DEHALOGENATION DETOXIFICATION
下载PDF
Solubility of iron(Ⅲ) and nickel(Ⅱ) acetylacetonates in supercritical carbon dioxide
6
作者 Haixin Sun Jianlei Qi +4 位作者 Jianfei Sun Lin Li Kunpeng Yu Jintao Wu Jianzhong Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期29-34,共6页
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav... As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range. 展开更多
关键词 Iron(III)acetylacetonate Nickel(II)acetylacetonate Supercritical carbon dioxide Solubility measurement Correlation model Phase equilibrium
下载PDF
Simulation Modelling and Techno-Economics of Supercritical Carbon Dioxide Recompression Closed Brayton Cycle
7
作者 Ken Amaale Atinga 《Energy and Power Engineering》 2024年第10期325-344,共20页
In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential inve... In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant. 展开更多
关键词 Supercritical carbon dioxide (sCO2) Closed Brayton Cycle TECHNO-ECONOMICS Simulation Capital Expenditure Gas Turbine THERMODYNAMIC Equipment Cost Optimization and Sensitivity
下载PDF
Progress and prospect of carbon dioxide capture, utilization and storage in CNPC oilfields 被引量:2
8
作者 SONG Xinmin WANG Feng +2 位作者 MA Desheng GAO Ming ZHANG Yunhai 《Petroleum Exploration and Development》 2023年第1期229-244,共16页
The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industri... The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industrial application.The breakthrough understanding of CO_(2) flooding mechanism and field practice in recent years and the corresponding supporting technical achievements of CCUS-EOR project are systematically described.The future development prospects are also pointed out.After nearly 60 years of exploration,the theory of CO_(2) flooding and storage suitable for continental sedimentary reservoirs in China has been innovatively developed.It is suggested that C7–C15 are also important components affecting miscibility of CO_(2) and crude oil.The mechanism of rapid recovery of formation energy by CO_(2) and significant improvement of block productivity and recovery factor has been verified in field tests.The CCUS-EOR reservoir engineering design technology for continental sedimentary reservoir is established.The technology of reservoir engineering parameter design and well spacing optimization has been developed,which focuses on maintaining miscibility to improve oil displacement efficiency and uniform displacement to improve sweep efficiency.The technology of CO_(2) capture,injection and production process,whole-system anticorrosion,storage monitoring and other whole-process supporting technologies have been initially formed.In order to realize the efficient utilization and permanent storage of CO_(2),it is necessary to take the oil reservoir in the oil-water transition zone into consideration,realize the large-scale CO_(2) flooding and storage in the area from single reservoir to the overall structural control system.The oil reservoir in the oil-water transition zone is developed by stable gravity flooding of injecting CO_(2) from structural highs.The research on the storage technology such as the conversion of residual oil and CO_(2) into methane needs to be carried out. 展开更多
关键词 carbon dioxide carbon dioxide capture EOR-utilization and storage oil displacement mechanism storage mechanism injection-production process EOR
下载PDF
Pulsed electrolysis of carbon dioxide by large-scale solid oxide electrolytic cells for intermittent renewable energy storage 被引量:2
9
作者 Anqi Wu Chaolei Li +5 位作者 Beibei Han Wu Liu Yang Zhang Svenja Hanson Wanbing Guan Subhash C.Singhal 《Carbon Energy》 SCIE CSCD 2023年第4期2-12,共11页
CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy... CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy is used to replicate intermittent energy availability,and the stability and conversion rate of the cyclic operation by a large-scale flat-tube SOEC are studied.One hundred cycles under pulsed current ranging from -100 to -300 mA/cm^(2) with a total operating time of about 800 h were carried out.The results show that after 100 cycles,the cell voltage attenuates by 0.041%/cycle in the high current stage of−300 mA/cm^(2),indicating that the lifetime of the cell can reach up to about 500 cycles.The total CO_(2) conversion rate reached 52%,which is close to the theoretical value of 54.3% at -300 mA/cm^(2),and the calculated efficiency approached 98.2%,assuming heat recycling.This study illustrates the significant advantages of SOEC in efficient electrochemical energy conversion,carbon emission mitigation,and seasonal energy storage. 展开更多
关键词 carbon dioxide cyclic electrolysis pulse current solid oxide electrolytic cells
下载PDF
Micro-interface enhanced mass transfer sodium carbonate absorption carbon dioxide reaction 被引量:1
10
作者 Hu Shen Yingyu Xu +4 位作者 Jigang An Bowen Jiang Jinnan Sun Guoqiang Yang Zhibing Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期208-223,共16页
Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focu... Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focuses on the variation pattern of mass transfer characteristics parameters of the reaction gas in Na_(2)CO_(3) solution under the influence of different solution properties and operating parameters in the reaction of CO_(2)absorption by Na2CO3.The mass transfer characteristics parameters include bubble Sauter mean diameter,gas holdup,interfacial area,liquid side mass transfer coefficient,and liquid side volume mass transfer coefficient kLa.The solution properties and operating parameters include Na2CO3 concentration(0.05–2.0 mol·L^(-1)),superficial gas velocity(0.00221–0.01989 m·s^(-1)),superficial liquid velocity(0.00332–0.02984 m·s^(-1)),and ionic strength(1.42456–1.59588 mol·kg^(-1)).And volumetric mass transfer coeffi-cients kLa and superficial reaction rates r of the MIR and the bubble column reactor are compared in the reaction of sodium carbonate absorption of carbon dioxide,and the former shows a greater improvement under different solution properties and operating parameters.The enhanced role of MIR in mass transfer in non-homogeneous reactions is verified and the feasibility of industrial practical applications of MIR is demonstrated. 展开更多
关键词 carbon dioxide ABSORPTION MICROBUBBLE Bubble Sauter mean diameter Interfacial area Mass transfer
下载PDF
Anti-Melanogenesis Activity of Supercritical Carbon Dioxide Extract from Perilla frutescens Seeds 被引量:1
11
作者 Satoshi Suzuki Hitomi Fujisawa +1 位作者 Junpei Abe Ken-ichi Kimura 《Advances in Biological Chemistry》 CAS 2023年第1期42-55,共14页
Perilla frutescens seed (PFS) oil is reported to inhibit skin photoaging;however, its effect on melanogenesis has not yet been investigated. Herein, we tested the anti-melanogenesis activity of an oil-based extract fr... Perilla frutescens seed (PFS) oil is reported to inhibit skin photoaging;however, its effect on melanogenesis has not yet been investigated. Herein, we tested the anti-melanogenesis activity of an oil-based extract from PFS with supercritical carbon dioxide (scCO<sub>2</sub>). In a cell culture system, B16 mouse melanoma cells were treated with the PFS scCO<sub>2</sub> extract and other samples. The PFS scCO<sub>2</sub> extract decreased melanin production by approximately 90% in B16 mouse melanoma cells without cytotoxicity at 100 μg/mL. This effect was greater than that of the well-known melanogenesis inhibitor, kojic acid. Although a hexane-extracted PFS oil and a squeezed PFS oil also decreased melanin production in the B16 cells, the inhibitory effect of the PFS scCO<sub>2</sub> extract was higher than both of these. Chemical analysis of the PFS scCO<sub>2</sub> extract and squeezed PFS oil showed that almost 90% of the components of both oils were α-linolenic acid, linoleic acid, and oleic acid. Furthermore, the ratio of those three fatty acids across both samples was almost the same. When the three fatty acids were mixed in the same ratio as in the PFS scCO<sub>2</sub> extract, the IC<sub>50</sub> of the mixture for melanin production in B16 melanoma cells was identical to that of the PFS scCO<sub>2</sub> extract. However, the IC<sub>50</sub> of the squeezed PFS oil was approximately 6.6 times higher than that of the mixture. Although those fatty acids are the main inhibitory ingredients against melanin production in all of the extracts, some factor(s) in the squeezed PFS reduce their affinity with the cells. These results indicated that the PFS scCO<sub>2</sub> extract could be a superior melanogenesis inhibitor. Although its main ingredients are probably the same as those of the squeezed PFS oil, it is necessary to extract with scCO<sub>2</sub> for stronger anti-melanogenesis activity. 展开更多
关键词 Perilla frutescens MELANOGENESIS Supercritical carbon dioxide B16 Mouse Melanoma Cells
下载PDF
Effects of zinc on χ-Fe_(5)C_(2) for carbon dioxide hydrogenation to olefins:Insights from experimental and density function theory calculations 被引量:1
12
作者 Xianglin Liu Minjie Xu +2 位作者 Chenxi Cao Zixu Yang Jing Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期206-214,共9页
Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum ... Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum resource. However, development of robust catalyst with controllable selectivity and stability remains a challenge. Herein, we report that Zn-promoted Fe catalyst can boost the stable and selective production of light olefins from CO_(2). Specifically, the Zn-promoted Fe exhibits a highly stable activity and olefin selectivity over 200 h time-on-stream compared to the unpromoted Fe catalyst, primarily owing to the preservation of active χ-Fe_(5)C_(2) phase. Structural characterizations of the spent catalysts suggest that Zn substantially regulates the content of iron carbide on the surface and suppresses the reoxidation of bulk iron carbide during the reaction. DFT calculations confirm that adsorption of surface carbon atoms and graphene-like carbonaceous species are not thermochemically favored on Zn-promoted Fe catalyst. Carbon deposition by CAC coupling reactions of two surface carbon atoms and dehydrogenation of CH intermediate are also inhibited. Furthermore, the effects of Zn on antioxidation of iron carbide were also investigated. Zn favored the hydrogenation of surface adsorbed oxygen atoms to H_(2)O and the desorption of H_(2)O, which reduces the possibility of surface carbide being oxidized by the chemisorbed oxygen. 展开更多
关键词 Reaction engineering χ-Fe_(5)C_(2) Zn promoter carbon dioxide HYDROGENATION Density function theory
下载PDF
Defect engineering of high-loading single-atom catalysts for electrochemical carbon dioxide reduction 被引量:1
13
作者 Yang Li Zhenjiang He +3 位作者 Feixiang Wu Shuangyin Wang Yi Cheng Sanping Jiang 《Materials Reports(Energy)》 2023年第2期124-141,I0003,共19页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed. 展开更多
关键词 Single-atom catalysts High loading ELECTROCATALYSIS carbon dioxide reduction(CO_(2)RR) Transition metals
下载PDF
Sub-2 nm mixed metal oxide for electrochemical reduction of carbon dioxide to carbon monoxide
14
作者 Devina Thasia Wijaya Andi Haryanto +2 位作者 Hyun Woo Lim Kyoungsuk Jin Chan Woo Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期303-310,共8页
Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction... Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface. 展开更多
关键词 carbon dioxide reduction Mixed metal oxide NANOALLOY carbon monoxide Metal-organic framework
下载PDF
Modulating Pd e_(g) orbital occupancy in Pd-Au metallic aerogels for efficient carbon dioxide reduction
15
作者 Yao Chen Juan Wang +8 位作者 Tingjie Mao Cun Chen Hanjun Li Honggang Huang Hui Fu Feili Lai Jiadong Chen Nan Zhang Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期98-104,I0004,共8页
The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(... The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(g) orbital occupancy of Pd by constructing composition-controllable Pd-Au metallic aerogels(MAs),optimizing the d-band center of Pd to achieve excellent performance for electrochemical carbon dioxide reduction reaction(CO_(2)RR).Specifically,Pd_(1)Au_(2) MAs achieve almost 100% Faraday efficiency(FE) of CO in the range of-0.40 to-0.80 V vs.reversible hydrogen electrode(RHE),as well as the long-term stability,being one of the best Pd-based materials for CO_(2)RR.The X-ray photoelectron spectroscopy(XPS) results and density functional theory(DFT) calculations demonstrate that the introduction of Au modulates the Pd e_(g) orbital occupancy,which significantly weakens *CO adsorption on Pd,reduces the CO_(2)RR energy barrier and consequently improves the electrocatalytic activity and stability for long-term applications.Our work highlights a new strategy for designing efficient electrocatalysts for CO_(2)RR and beyond. 展开更多
关键词 PD carbon dioxide reduction Alloy AEROGELS Orbital occupancy
下载PDF
Indian Solar Panel Initiatives in Reducing Carbon Dioxide Emissions
16
作者 Manoj K. Khanna Sarika Malik +1 位作者 Hemant Kumar   Suruchi 《Energy and Power Engineering》 CAS 2023年第4期191-203,共13页
Environmental degradation and the emission of greenhouse gases particularly carbon dioxide have expanded problems to human wellness and to the atmosphere. The second-most populated country in the globe, India, is amon... Environmental degradation and the emission of greenhouse gases particularly carbon dioxide have expanded problems to human wellness and to the atmosphere. The second-most populated country in the globe, India, is among the primary users of conventional resources, which leads to global warming. The growth rate is anticipated to raise more before 2050, which will cause the brisk industrial expansion and rising energy demand to both increases. In order to reduce carbon emissions and meet energy requirements, many countries use alternate usage of renewable energy particularly solar energy. In this review we aim to study solar panel schemes initiated by India, mainly focusing on National Solar Mission. This study also reviews the present solar installed capacity, solar panel scheme 2022, and initiatives and outcomes of solar panels in residences and offices. This study reviewed that by using solar panel resources, the (MNRE) Ministry of New and Renewable Energy hopes to help the Indian Government reach its purpose of 100 GW solar installed capacity by end of 2022. Despite having an amazing 40 GW of solar power installed capacity till December 2021, India is still far from reaching its own goal of 100 GW by March 2023 as per NSM. In essence, this means that India will need to change a few of its ongoing plans further. 展开更多
关键词 Renewable Energy Solar Panel carbon dioxide Emission Schemes of the Indian Government INITIATIVES
下载PDF
Experimental Research on Supercritical Carbon Dioxide Fracturing of Sedimentary Rock:A Critical Review
17
作者 ZHENG Bowen QI Shengwen +4 位作者 LU Wei GUO Songfeng WANG Zan YU Xin ZHANG Yan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期925-945,共21页
Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimenta... Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimentary rocks fractured by ScCO_(2).The breakdown pressure,fracture parameters,mineral composition,bedding plane angle and permeability are discussed.We also compare the differences between sedimentary rock and granite fractured by ScCO_(2),ultimately noting problems and suggesting solutions and strategies for the future.The analysis found that the breakdown pressure of ScCO_(2)was reduced 6.52%–52.31%compared with that of using water.ScCO_(2)tends to produce a complex fracture morphology with significantly higher permeability.When compared with water,the fracture aperture of ScCO_(2)was decreased by 4.10%–72.33%,the tortuosity of ScCO_(2)was increased by 5.41%–70.98%and the fractal dimension of ScCO_(2)was increased by 4.55%–8.41%.The breakdown pressure of sandstone is more sensitive to the nature of the fracturing fluid,but fracture aperture is less sensitive to fracturing fluid than for shale and coal.Compared with granite,the tortuosity of sedimentary rock is more sensitive to the fracturing fluid and the fracture fractal dimension is less sensitive to the fracturing fluid.Existing research shows that ScCO_(2)has the advantages of low breakdown pressure,good fracture creation and environmental protection.It is recommended that research be conducted in terms of sample terms,experimental conditions,effectiveness evaluation and theoretical derivation in order to promote the application of ScCO_(2)reformed reservoirs in the future. 展开更多
关键词 sedimentary rock supercritical carbon dioxide fracturing experiment breakdown pressure fracture parameters
下载PDF
Numerical simulations of supercritical carbon dioxide fracturing:A review
18
作者 Lin Wu Zhengmeng Hou +6 位作者 Zhifeng Luo Ying Xiong Nanlin Zhang Jiashun Luo Yanli Fang Qianjun Chen Xuning Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1895-1910,共16页
As an emerging waterless fracturing technology,supercritical carbon dioxide(SC-CO_(2))fracturing can reduce reservoir damage and dependence on water resources,and can also promote the reservoir stimulation and geologi... As an emerging waterless fracturing technology,supercritical carbon dioxide(SC-CO_(2))fracturing can reduce reservoir damage and dependence on water resources,and can also promote the reservoir stimulation and geological storage of carbon dioxide(CO_(2)).It is vital to figure out the laws in SC-CO_(2)fracturing for the large-scale field implementation of this technology.This paper reviews the numerical simulations of wellbore flow and heat transfer,fracture initiation and propagation,and proppant transport in SC-CO_(2)fracturing,including the numerical approaches and the obtained findings.It shows that the variations of wellbore temperature and pressure are complex and strongly transient.The wellhead pressure can be reduced by tubing and annulus co-injection or adding drag reducers into the fracturing fluid.Increasing the temperature of CO_(2)with wellhead heating can promote CO_(2)to reach the well bottom in the supercritical state.Compared with hydraulic fracturing,SC-CO_(2)fracturing has a lower fracture initiation pressure and can form a more complex fracture network,but the fracture width is narrower.The technology of SC-CO_(2)fracturing followed by thickened SC-CO_(2)fracturing,which combines with high injection rates and ultra-light proppants,can improve the placement effect of proppants while improving the complexity and width of fractures.The follow-up research is required to get a deeper insight into the SC-CO_(2)fracturing mechanisms and develop cost-effective drag reducers,thickeners,and ultra-light proppants.This paper can guide further research and promote the field application of SC-CO_(2)fracturing technology. 展开更多
关键词 Wellbore FRACTURING Proppant transport Supercritical carbon dioxide Fracture initiation and propagation
下载PDF
Finned Zn-MFI zeolite encapsulated noble metal nanoparticle catalysts for the oxidative dehydrogenation of propane with carbon dioxide
19
作者 En-Hui Yuan Yiming Niu +7 位作者 Xing Huang Meng Li Jun Bao Yong-Hong Song Bingsen Zhang Zhao-Tie Liu Marc-Georg Willinger Zhong-Wen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期479-491,I0011,共14页
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin... Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix. 展开更多
关键词 Oxidative dehydrogenation PROPANE carbon dioxide Finned Zn-MFI zeolite Encapsulated noble metal nanoparticles
下载PDF
Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide:An experimental and kinetic modeling
20
作者 Xun Tao Fan Zhou +6 位作者 Xinlei Yu Songling Guo Yunfei Gao Lu Ding Guangsuo Yu Zhenghua Dai Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期105-117,共13页
CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyf... CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control. 展开更多
关键词 carbon dioxide Oxy-fuel combustion of H_(2)S Reaction pathway KINETICS OXIDATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部