Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels usin...Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.展开更多
Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural co...Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes.展开更多
Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel...Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.展开更多
BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.Howeve...BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF.展开更多
Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,...Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes.展开更多
Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this...Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants.展开更多
Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footp...Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footprint energy chemicals such as H_(2),HCOOH,CO,and transportation fuels.State-of-the-art biorefineries target the full use of biomass feedstocks as they have a maximum collection radius of 75-100 km,requesting efficient and selective photocatalysts that significantly influence the outcome of photocatalytic biorefineries.Well-performed photocatalysts can harvest a broad solar spectrum and are active in breaking the chemical bonds of cellulose,decreasing the capital investments of biorefineries.Besides,photocatalysts should control the selectivity of cellulose conversion,originating target products to level down separation costs.Charge separation in photocatalysts and interfacial charge transfer between photocatalysts and cellulose affect the activity and selectivity of cellulose refineries to H2 and carbonaceous chemicals.To account for the challenges above,this review summarizes photocatalysts for the refineries of cellulose and downstream platform molecules based on the types of products,with the structure features of different types of photocatalysts discussed in relation to the targets of either improving the activity or product selectivity.In addition,this review also sheds light on the methods for designing and regulating photocatalyst structures to facilitate photocatalytic refineries of cellulose and platform molecules,meanwhile summarizing proposed future research challenges and opportunities for designing efficient photocatalysts.展开更多
AIM:To evaluate the relationship between monocyte to high-density lipoprotein cholesterol ratio(MHR)and the disease activity of thyroid-associated ophthalmopathy(TAO).METHODS:A total of 87 patients were classified int...AIM:To evaluate the relationship between monocyte to high-density lipoprotein cholesterol ratio(MHR)and the disease activity of thyroid-associated ophthalmopathy(TAO).METHODS:A total of 87 patients were classified into two groups based on clinical activity score(CAS)scoring criteria:high CAS group(n=62,the CAS score was≥3);low CAS group(n=25,the CAS score was<3).In addition,a group of healthy people(n=114)were included to compared the MHR.Proptosis,MHR,average signal intensity ratio(SIR),average lacrimal gland(LG)-SIR,average extraocular muscles(EOM)area from 87 patients with TAO were calculated in magnetic resonance imaging(MRI),and compared between these two groups.Correlation testing was utilized to evaluate the association of parameters among the clinical variables.RESULTS:Patients in high CAS group had a higher proptosis(P=0.041)and MHR(P=0.048).Compared to the healthy group,the MHR in the TAO group was higher(P=0.001).Correlation testing declared that CAS score was strongly associated with proptosis and average SIR,and MHR was positively associated with CAS score,average SIR,and average LG-SIR.The area under the receiver operating characteristic curve(AUC)of MHR was 0.6755.CONCLUSION:MHR,a novel inflammatory biomarker,has a significant association with CAS score and MRI imaging(average SIR and LG-SIR)and it can be a new promising predictor during the active phase of TAO.展开更多
In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a...In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a novel hollow tungsten TSV(W-TSV)is presented and developed.The hollow structure provides space for the release of thermal stress.Simulation results showed that the hollow W-TSV structure can release 60.3%of thermal stress within the top 2 lm from the surface,and thermal stress can be decreased to less than 20 MPa in the radial area of 3 lm.The ultra-high-density(1600 TSV∙mm2)TSV array with a size of 640×512,a pitch of 25 lm,and an aspect ratio of 20.3 was fabricated,and the test results demonstrated that the proposed TSV has excellent electrical and reliability performances.The average resistance of the TSV was 1.21 X.The leakage current was 643 pA and the breakdown voltage was greater than 100 V.The resistance change is less than 2%after 100 temperature cycles from40 to 125℃.Raman spectroscopy showed that the maximum stress on the wafer surface caused by the hollow W-TSV was 31.02 MPa,which means that there was no keep-out zone(KOZ)caused by the TSV array.These results indicate that this structure has great potential for applications in large-array photodetectors and 3D integrated circuits.展开更多
Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit ...Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants.展开更多
BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial a...BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial and unclear,which requires further investigation.In this prospective study,96 patients with acute ischemic stroke(AIS)who accepted endovascular mechanical thrombectomy(EMT)were included.The enrolled patients underwent cranial computed tomography(CT)examination within 24 hours after EMT.Clinical data in terms of National Institutes of Health Stroke Scale(NIHSS),the 3-month modified Rankin Scale(mRS),self-rating depression scale(SDS),and self-rating anxiety scale(SAS)scores were collected and compared between patients with HDAs and non-HDAs and between patients with good and poor clinical prognosis.Compared to patients without HDAs,patients with HDAs presented severe neurological deficits(admission NIHSS score:18±3 vs 19±4),were more likely to have post-stroke disabilities(mRS<3:35%vs 62%),and suffered more severe depression(SDS score:58±16 vs 64±13)and anxiety disorder(SAS score:52±8 vs 59±10).Compared to patients with a good prognosis,patients with a poor prognosis presented severe neurological deficits(admission NIHSS score:17±4 vs 20±3),were more likely to have HDAs on CT images(64%vs 33%),and suffered more severe depression(SDS score:55±19 vs 65±11)and anxiety(SAS score:50±8 vs 58±12).Multivariate analysis revealed that HDAs were independent nega-tive prognostic factors.CONCLUSION In conclusion,HDAs on CT images predicted poor prognosis and severe depressive and anxiety symptoms in patients with AIS who underwent EMT.展开更多
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems...This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.展开更多
Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in ...Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in biofuels production infrastructure. Concerns over the environmental impacts of large-scale biofuels production combined with tariff barriers have greatly restricted the global trade in biofuels. First-generation biofuels produced either by fermentation of sugars from maize or sugarcane (ethanol) or transesterification of triglycerides (biodiesel) presently contribute less than 4% of terrestrial transportation fuel demand and techno-economic modelling foresees this only slowly increasing by 2035. With internal combustion and diesel engines widely anticipated as being phased out in favour of electric power for motor vehicles, a much-reduced market demand for biofuels is likely if global demand for all liquid fuels declines by 2050. However, second-generation, thermochemically produced and biomass-derived fuels (renewable diesel, marine oils and sustainable aviation fuel) have much higher blend limits;combined with policies to decarbonise the aviation and marine industries, major new markets for these products in terrestrial, marine and aviation sectors may emerge in the second half of the 21st century.展开更多
Background:Helicobacter pylori(HP)is associated with several gastrointestinal diseases,including peptic ulcer diseases and gastric cancer,and non-gastrointestinal diseases such as hypertension and Alzheimer's dise...Background:Helicobacter pylori(HP)is associated with several gastrointestinal diseases,including peptic ulcer diseases and gastric cancer,and non-gastrointestinal diseases such as hypertension and Alzheimer's disease.However,the relationship between HP and lipid metabolism and atherosclerosis remains unclear.This study aims to investigate the association between H.pylori infection and high-density lipoprotein cholesterol levels and pulse wave conduction velocity.Methods:This is a report of a cross-sectional study that collected data from 2,827 participants.The data collected included results of life questionnaires,laboratory tests,13C-urea breath test(13C-UBT),and pulse wave conduction velocity test.Based on the results of the 13C-UBT test,the subjects were divided into two groups:the HP-uninfected group(HP−)and the HP-infected group(HP+).The study compared the differences in HDL-C levels and brachial-ankle pulse wave velocity(baPWV)between the two groups.One-way regression analysis was used to identify potential factors affecting HDL-C levels in the study population.Multiple regression equations were presented to analyze whether HP infection was an independent risk factor for abnormal HDL-C metabolism in the population.Results:Univariate analysis demonstrated that high-density lipoprotein cholesterol(HDL-C)levels were significantly lower in the HP+group compared to the HP−group,with a mean difference ofβ=−18.1 mg/dl(95%CI:−19.3 to−17.0,P<0.001).After adjusting for all variables,the HDL-C levels remained lower in the HP+group compared to the HP-group,with a mean difference ofβ=−17.4 mg/dl(95%CI:−18.2 to−16.7,P<0.001).These findings suggest that H.pylori infection is independently associated with abnormal HDL-C metabolism.Additionally,brachial-ankle pulse wave velocity(baPWV)was higher in the HP+group than in the HP−group on both sides.On the right side,the baPWV was 1,713.4±231.4 cm/s in the HP+group compared to 1,542.8±237.5 cm/s in the HP−group(t=−18.30,P<0.001).On the left side,the baPWV was 1,743.7±238.8 cm/s in the HP+group compared to 1,562.8±256.3 cm/s in the HP−group(t=−18.23,P<0.001).These results indicate a significant association between H.pylori infection and increased arterial stiffness,as measured by baPWV.Conclusion:Helicobacter pylori infection is associated with a decrease in high-density lipoprotein cholesterol levels and an increase in pulse wave conduction velocity.展开更多
Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved ...Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved in-depth results.Here,a high-density map was constructed to identify quantitative trait loci(QTLs)for berry shape.A total of 358709 polymorphic SNPs were obtained using whole-genome resequencing(WGS)based on 208 F2 individuals derived from round grape‘E42-6’and oblong grape‘Rizamat’.The 1635.65 cM high-density map was divided into 19 linkage groups with an average distance of 0.37 cM.Using this map,three significant QTLs for fruit shape index(ShI:ratio of berry length to berry width)identified over three years were mapped onto LG4 and LG5,including one stable QTL on Chr5 with the genomic region of 0.47–1.94 Mb.Combining with gene annotation and expression patterns based on RNA-seq data from two contrasting F2 individuals with round and oblong berry(their average ShI was 1.89 and 1.10,respectively)at four developmental stages,four candidate genes were selected from the above QTLs.They were mainly involved in DNA replication,cell wall modification,and phytohormone biosynthesis.Further analysis of RNA-seq data revealed that several important phytohormone synthesis and metabolic pathways were enriched based on differentially expressed genes(DEGs),which was consistent with the results of QTL mapping for genes related to plant hormone biosynthesis in the F2 population.Furthermore,a comparison of plant hormone content showed that there were significant differences in IAA and tZ content between the two contrasting F2 individuals at different developmental stages.Our findings provide molecular insights into the genetic variation in grape berry shape.Stable QTLs and their tightly linked markers offer the possibility of marker-assisted selection to accelerate berry shape breeding.展开更多
Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors...Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors and explosion severity of aluminum/polytetrafluoroethylene(Al/PTFE)compositions including 2 PT(2.80 wt.%F),4 PT(7.18 wt.%F)and 8 PT(11.90 wt.%F)were studied.When the content of F increased from 2.80 wt.%to 11.90 wt.%,the minimum explosive concentration MEC decreased from380 g/m^(3)to 140 g/m^(3),due to the dual effects of increased internal active aluminum and enhanced reactivity.The average flame propagation velocities increased as the percentage of F increased.The maximum explosion pressure Pmof 500 g/m3aluminum-based activated fuels increased from 247 k Pa to299 kPa.Scanning electron microscopy demonstrated that with the increase of PTFE content,the reaction was more complete.On this basis,the explosion mechanism of aluminum-based activated fuels was revealed.展开更多
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demogra...This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demographic and Health Surveys(DHS).Results from both fixed effects(FE)and instrumental variable(IV)estimates show that using non-solid cooking fuel significantly improves the nutrition outcomes of under-five children.Compared with their peers from households mainly using solid fuel,children from households mainly using non-solid fuel exhibit a lower probability of experiencing stunting(by 5.9 percentage points)and being underweight(by 1.2 percentage points).Our further investigation provides evidence for several underlying mechanisms,such as improved indoor air quality,induced reduction in children’s respiratory symptoms,benefits on maternal health,and reduction in maternal time spent on fuel collection or cooking.Heterogenous analyses suggest that the nutrition benefits of using non-solid cooking fuel are more prominent among boys,children above three years old,and those from households of lower socioeconomic status,rural areas,and Southeast Asia.展开更多
During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil d...During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.展开更多
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st...The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.展开更多
基金the support from National Key Research and Development Program of China(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.
基金supported by National Natural Science Foundation of China Project (Grant No. 52374133, 52262034)the Guangdong Basic and Applied Basic Research Committee Foundation (Grant No. KCXST20221021111601003)Shenzhen Science and Technology Innovation Commission Foundation (Grant No. KCXST20221021111601003)
文摘Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes.
基金supported by the National Key Research and Development Program(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.
文摘BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF.
基金supported by The National Natural Science Foundation of China(22276137,52170087)the Fundamental Research Funds for the Central Universities(XJEDU2023Z009).
文摘Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes.
基金support from the National Natural Science Foundation of China (22222808, 21978200)the Haihe Laboratory of Sustainable Chemical Transformations for financial support
文摘Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants.
基金supported by the National Natural Science Foundation of China(22172157,22025206)the Dalian Innovation Support Plan for High Level Talents(2022RG13),DICP(DICP I202116)+1 种基金the Youth Innovation Promotion Association(YIPA)of the Chinese Academy of Sciences(2023192)the Fundamental Research Funds for the Central Universities(20720220008)。
文摘Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footprint energy chemicals such as H_(2),HCOOH,CO,and transportation fuels.State-of-the-art biorefineries target the full use of biomass feedstocks as they have a maximum collection radius of 75-100 km,requesting efficient and selective photocatalysts that significantly influence the outcome of photocatalytic biorefineries.Well-performed photocatalysts can harvest a broad solar spectrum and are active in breaking the chemical bonds of cellulose,decreasing the capital investments of biorefineries.Besides,photocatalysts should control the selectivity of cellulose conversion,originating target products to level down separation costs.Charge separation in photocatalysts and interfacial charge transfer between photocatalysts and cellulose affect the activity and selectivity of cellulose refineries to H2 and carbonaceous chemicals.To account for the challenges above,this review summarizes photocatalysts for the refineries of cellulose and downstream platform molecules based on the types of products,with the structure features of different types of photocatalysts discussed in relation to the targets of either improving the activity or product selectivity.In addition,this review also sheds light on the methods for designing and regulating photocatalyst structures to facilitate photocatalytic refineries of cellulose and platform molecules,meanwhile summarizing proposed future research challenges and opportunities for designing efficient photocatalysts.
基金Supported by the Special Fund for Clinical Research of Nanjing Drum Tower Hospital(No.2023-LCYJPY-37).
文摘AIM:To evaluate the relationship between monocyte to high-density lipoprotein cholesterol ratio(MHR)and the disease activity of thyroid-associated ophthalmopathy(TAO).METHODS:A total of 87 patients were classified into two groups based on clinical activity score(CAS)scoring criteria:high CAS group(n=62,the CAS score was≥3);low CAS group(n=25,the CAS score was<3).In addition,a group of healthy people(n=114)were included to compared the MHR.Proptosis,MHR,average signal intensity ratio(SIR),average lacrimal gland(LG)-SIR,average extraocular muscles(EOM)area from 87 patients with TAO were calculated in magnetic resonance imaging(MRI),and compared between these two groups.Correlation testing was utilized to evaluate the association of parameters among the clinical variables.RESULTS:Patients in high CAS group had a higher proptosis(P=0.041)and MHR(P=0.048).Compared to the healthy group,the MHR in the TAO group was higher(P=0.001).Correlation testing declared that CAS score was strongly associated with proptosis and average SIR,and MHR was positively associated with CAS score,average SIR,and average LG-SIR.The area under the receiver operating characteristic curve(AUC)of MHR was 0.6755.CONCLUSION:MHR,a novel inflammatory biomarker,has a significant association with CAS score and MRI imaging(average SIR and LG-SIR)and it can be a new promising predictor during the active phase of TAO.
基金supported by the National Key Research and Development Program of China(2021YFB2011700).
文摘In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a novel hollow tungsten TSV(W-TSV)is presented and developed.The hollow structure provides space for the release of thermal stress.Simulation results showed that the hollow W-TSV structure can release 60.3%of thermal stress within the top 2 lm from the surface,and thermal stress can be decreased to less than 20 MPa in the radial area of 3 lm.The ultra-high-density(1600 TSV∙mm2)TSV array with a size of 640×512,a pitch of 25 lm,and an aspect ratio of 20.3 was fabricated,and the test results demonstrated that the proposed TSV has excellent electrical and reliability performances.The average resistance of the TSV was 1.21 X.The leakage current was 643 pA and the breakdown voltage was greater than 100 V.The resistance change is less than 2%after 100 temperature cycles from40 to 125℃.Raman spectroscopy showed that the maximum stress on the wafer surface caused by the hollow W-TSV was 31.02 MPa,which means that there was no keep-out zone(KOZ)caused by the TSV array.These results indicate that this structure has great potential for applications in large-array photodetectors and 3D integrated circuits.
基金State Key Laboratory of Explosion Science and Safety Protection of China (Grant No.QNKT21-8)National Natural Science Foundation of China (Grant No.12302432)to provide financial support。
文摘Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants.
文摘BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial and unclear,which requires further investigation.In this prospective study,96 patients with acute ischemic stroke(AIS)who accepted endovascular mechanical thrombectomy(EMT)were included.The enrolled patients underwent cranial computed tomography(CT)examination within 24 hours after EMT.Clinical data in terms of National Institutes of Health Stroke Scale(NIHSS),the 3-month modified Rankin Scale(mRS),self-rating depression scale(SDS),and self-rating anxiety scale(SAS)scores were collected and compared between patients with HDAs and non-HDAs and between patients with good and poor clinical prognosis.Compared to patients without HDAs,patients with HDAs presented severe neurological deficits(admission NIHSS score:18±3 vs 19±4),were more likely to have post-stroke disabilities(mRS<3:35%vs 62%),and suffered more severe depression(SDS score:58±16 vs 64±13)and anxiety disorder(SAS score:52±8 vs 59±10).Compared to patients with a good prognosis,patients with a poor prognosis presented severe neurological deficits(admission NIHSS score:17±4 vs 20±3),were more likely to have HDAs on CT images(64%vs 33%),and suffered more severe depression(SDS score:55±19 vs 65±11)and anxiety(SAS score:50±8 vs 58±12).Multivariate analysis revealed that HDAs were independent nega-tive prognostic factors.CONCLUSION In conclusion,HDAs on CT images predicted poor prognosis and severe depressive and anxiety symptoms in patients with AIS who underwent EMT.
基金the EU for providing support to these activities through the EU projects DECADE(862030),EPOCH(101070976)and SCOPE(810182)。
文摘This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.
文摘Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in biofuels production infrastructure. Concerns over the environmental impacts of large-scale biofuels production combined with tariff barriers have greatly restricted the global trade in biofuels. First-generation biofuels produced either by fermentation of sugars from maize or sugarcane (ethanol) or transesterification of triglycerides (biodiesel) presently contribute less than 4% of terrestrial transportation fuel demand and techno-economic modelling foresees this only slowly increasing by 2035. With internal combustion and diesel engines widely anticipated as being phased out in favour of electric power for motor vehicles, a much-reduced market demand for biofuels is likely if global demand for all liquid fuels declines by 2050. However, second-generation, thermochemically produced and biomass-derived fuels (renewable diesel, marine oils and sustainable aviation fuel) have much higher blend limits;combined with policies to decarbonise the aviation and marine industries, major new markets for these products in terrestrial, marine and aviation sectors may emerge in the second half of the 21st century.
基金The Sichuan Medical and Health Care Promotion Institute Research Project(KY2022SJ0100).
文摘Background:Helicobacter pylori(HP)is associated with several gastrointestinal diseases,including peptic ulcer diseases and gastric cancer,and non-gastrointestinal diseases such as hypertension and Alzheimer's disease.However,the relationship between HP and lipid metabolism and atherosclerosis remains unclear.This study aims to investigate the association between H.pylori infection and high-density lipoprotein cholesterol levels and pulse wave conduction velocity.Methods:This is a report of a cross-sectional study that collected data from 2,827 participants.The data collected included results of life questionnaires,laboratory tests,13C-urea breath test(13C-UBT),and pulse wave conduction velocity test.Based on the results of the 13C-UBT test,the subjects were divided into two groups:the HP-uninfected group(HP−)and the HP-infected group(HP+).The study compared the differences in HDL-C levels and brachial-ankle pulse wave velocity(baPWV)between the two groups.One-way regression analysis was used to identify potential factors affecting HDL-C levels in the study population.Multiple regression equations were presented to analyze whether HP infection was an independent risk factor for abnormal HDL-C metabolism in the population.Results:Univariate analysis demonstrated that high-density lipoprotein cholesterol(HDL-C)levels were significantly lower in the HP+group compared to the HP−group,with a mean difference ofβ=−18.1 mg/dl(95%CI:−19.3 to−17.0,P<0.001).After adjusting for all variables,the HDL-C levels remained lower in the HP+group compared to the HP-group,with a mean difference ofβ=−17.4 mg/dl(95%CI:−18.2 to−16.7,P<0.001).These findings suggest that H.pylori infection is independently associated with abnormal HDL-C metabolism.Additionally,brachial-ankle pulse wave velocity(baPWV)was higher in the HP+group than in the HP−group on both sides.On the right side,the baPWV was 1,713.4±231.4 cm/s in the HP+group compared to 1,542.8±237.5 cm/s in the HP−group(t=−18.30,P<0.001).On the left side,the baPWV was 1,743.7±238.8 cm/s in the HP+group compared to 1,562.8±256.3 cm/s in the HP−group(t=−18.23,P<0.001).These results indicate a significant association between H.pylori infection and increased arterial stiffness,as measured by baPWV.Conclusion:Helicobacter pylori infection is associated with a decrease in high-density lipoprotein cholesterol levels and an increase in pulse wave conduction velocity.
基金financially supported by National Key R&D Program of China(Grant No.2019YFD1001401)Project of Construction of Grape Germplasm Resources Sharing Platform(Grant No.PT2029)+2 种基金Zhengzhou Major Scientific and Technological Innovation Projects(Grant No.2020CXZX0082)National Modern Agricultural Industry Technology System Construction Special Project(Grant No.CARS-29-yc-1)Special Project of Science,Technology Innovation Project of Chinese Academy of Agricultural Sciences(Grant No.CAAS-ASTIP-2019-ZFRI).
文摘Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved in-depth results.Here,a high-density map was constructed to identify quantitative trait loci(QTLs)for berry shape.A total of 358709 polymorphic SNPs were obtained using whole-genome resequencing(WGS)based on 208 F2 individuals derived from round grape‘E42-6’and oblong grape‘Rizamat’.The 1635.65 cM high-density map was divided into 19 linkage groups with an average distance of 0.37 cM.Using this map,three significant QTLs for fruit shape index(ShI:ratio of berry length to berry width)identified over three years were mapped onto LG4 and LG5,including one stable QTL on Chr5 with the genomic region of 0.47–1.94 Mb.Combining with gene annotation and expression patterns based on RNA-seq data from two contrasting F2 individuals with round and oblong berry(their average ShI was 1.89 and 1.10,respectively)at four developmental stages,four candidate genes were selected from the above QTLs.They were mainly involved in DNA replication,cell wall modification,and phytohormone biosynthesis.Further analysis of RNA-seq data revealed that several important phytohormone synthesis and metabolic pathways were enriched based on differentially expressed genes(DEGs),which was consistent with the results of QTL mapping for genes related to plant hormone biosynthesis in the F2 population.Furthermore,a comparison of plant hormone content showed that there were significant differences in IAA and tZ content between the two contrasting F2 individuals at different developmental stages.Our findings provide molecular insights into the genetic variation in grape berry shape.Stable QTLs and their tightly linked markers offer the possibility of marker-assisted selection to accelerate berry shape breeding.
基金financially supported by National Natural Science Foundation of China(No.51922025 and No.51874066)China Postdoctoral Science Foundation(No.2020M670759)the Fundamental Research Funds for the Central Universities(No.DUT20GJ201)。
文摘Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors and explosion severity of aluminum/polytetrafluoroethylene(Al/PTFE)compositions including 2 PT(2.80 wt.%F),4 PT(7.18 wt.%F)and 8 PT(11.90 wt.%F)were studied.When the content of F increased from 2.80 wt.%to 11.90 wt.%,the minimum explosive concentration MEC decreased from380 g/m^(3)to 140 g/m^(3),due to the dual effects of increased internal active aluminum and enhanced reactivity.The average flame propagation velocities increased as the percentage of F increased.The maximum explosion pressure Pmof 500 g/m3aluminum-based activated fuels increased from 247 k Pa to299 kPa.Scanning electron microscopy demonstrated that with the increase of PTFE content,the reaction was more complete.On this basis,the explosion mechanism of aluminum-based activated fuels was revealed.
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
基金This work was supported by the National Natural Science Foundation of China(71861147003 and 71925009).
文摘This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demographic and Health Surveys(DHS).Results from both fixed effects(FE)and instrumental variable(IV)estimates show that using non-solid cooking fuel significantly improves the nutrition outcomes of under-five children.Compared with their peers from households mainly using solid fuel,children from households mainly using non-solid fuel exhibit a lower probability of experiencing stunting(by 5.9 percentage points)and being underweight(by 1.2 percentage points).Our further investigation provides evidence for several underlying mechanisms,such as improved indoor air quality,induced reduction in children’s respiratory symptoms,benefits on maternal health,and reduction in maternal time spent on fuel collection or cooking.Heterogenous analyses suggest that the nutrition benefits of using non-solid cooking fuel are more prominent among boys,children above three years old,and those from households of lower socioeconomic status,rural areas,and Southeast Asia.
基金financial supports for this research project by the National Natural Science Foundation of China(Nos.41602308,41967037)supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY20E080005+1 种基金funded by National Key Research and Development Projects of China(No.2019YFC507502)Guangxi Science and Technology Plan Project(No.RZ2100000161).
文摘During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.
基金financially supported by the National Key Research and Development Program of China (No.2021YFB4001400)。
文摘The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.