A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noi...A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure.展开更多
A direction-based adaptive switching(DBAS) filter is presented for the removal of high-density impulse noise in images. The extrema detection and 28-directional detection are employed to discriminate the pixels as noi...A direction-based adaptive switching(DBAS) filter is presented for the removal of high-density impulse noise in images. The extrema detection and 28-directional detection are employed to discriminate the pixels as noisy or noise-free. If a pixel is classified as noisy, it will be replaced by a median or a mean value within an adaptive filter window with respect to different noise densities. Simulation results show that the miss-detection ratio and false-alarm ratio are both very low even at noise level as high as 90%. At the same time, better results are obtained in terms of the qualitative and quantitative measures. The peak signal-to-noise ratios increase by nearly 1 dB compared with other existing algorithms. In addition, the computation time is around 10 s for test images with resolutions of 512×512since the proposed approach has low complexity.展开更多
Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,...Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e...Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.展开更多
BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.Howeve...BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF.展开更多
In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance...In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance of the symmetric BM subjected to Lévy noise.Through numerical simulations,it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise.Without any load,the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current.With a load,the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking.The results of this research are of great significance for opening up BM’s intrinsic physical mechanism and promoting the development of nanotechnology.展开更多
Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels usin...Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.展开更多
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can...The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.展开更多
Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from bo...Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.展开更多
Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ign...A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ignition(DCI)scheme.Due to the collision of the two low-density plasmas,the density and volume of the high-density plasma vary.Therefore,the ignition temperature and energy requirement of the high-density plasma vary at different moments,and the required energy for hot electrons to heat the plasma also changes.In practical experiments,the energy input of hot electrons needs to be considered.To reduce the energy input of hot electrons,the optimal moment and the shortest time for injecting hot electrons with minimum energy are analyzed.In this paper,it is proposed to inject hot electrons for a short time to heat the high-density plasma to a relatively high temperature.Then,the alpha particles with the high heating rate and PdV work heat the plasma to the ignition temperature,further reducing the energy required to inject hot electrons.The study of the injection time of fast electrons can reduce the energy requirement of fast electrons for the high-density plasma and increase the probability of successful ignition of the high-density plasma.展开更多
In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a...In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a novel hollow tungsten TSV(W-TSV)is presented and developed.The hollow structure provides space for the release of thermal stress.Simulation results showed that the hollow W-TSV structure can release 60.3%of thermal stress within the top 2 lm from the surface,and thermal stress can be decreased to less than 20 MPa in the radial area of 3 lm.The ultra-high-density(1600 TSV∙mm2)TSV array with a size of 640×512,a pitch of 25 lm,and an aspect ratio of 20.3 was fabricated,and the test results demonstrated that the proposed TSV has excellent electrical and reliability performances.The average resistance of the TSV was 1.21 X.The leakage current was 643 pA and the breakdown voltage was greater than 100 V.The resistance change is less than 2%after 100 temperature cycles from40 to 125℃.Raman spectroscopy showed that the maximum stress on the wafer surface caused by the hollow W-TSV was 31.02 MPa,which means that there was no keep-out zone(KOZ)caused by the TSV array.These results indicate that this structure has great potential for applications in large-array photodetectors and 3D integrated circuits.展开更多
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is...As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.展开更多
Social networks are inevitably subject to disruptions from the physical world,such as sudden internet outages that sever local connections and impede information flow.While Gaussian white noise,commonly used to simula...Social networks are inevitably subject to disruptions from the physical world,such as sudden internet outages that sever local connections and impede information flow.While Gaussian white noise,commonly used to simulate stochastic disruptions,only fluctuates within a narrow range around its mean and fails to capture large-scale variations,L´evy noise can effectively compensate for this limitation.Therefore,a susceptible–infected–removed rumor propagation model with L´evy noise is constructed on homogeneous and heterogeneous networks,respectively.Then,the existence of a global positive solution and the asymptotic path-wise of the solution are derived on heterogeneous networks,and the sufficient conditions of rumor extinction and persistence are investigated.Subsequently,theoretical results are verified through numerical calculations and the sensitivity analysis related to the threshold is conducted on the model parameters.Through simulation experiments on Watts–Strogatz(WS)and Barab´asi–Albert networks,it is found that the addition of noise can inhibit the spread of rumors,resulting in a stochastic resonance phenomenon,and the optimal noise intensity is obtained on the WS network.The validity of the model is verified on three real datasets by particle swarm optimization algorithm.展开更多
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to...This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).展开更多
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
In the processing of conventional marine seismic data,seawater is often assumed to have a constant velocity model.However,due to static pressure,temperature difference and other factors,random disturbances may often f...In the processing of conventional marine seismic data,seawater is often assumed to have a constant velocity model.However,due to static pressure,temperature difference and other factors,random disturbances may often frequently in seawater bodies.The impact of such disturbances on data processing results is a topic of theoretical research.Since seawater sound velocity is a difficult physical quantity to measure,there is a need for a method that can generate models conforming to seawater characteristics.This article will combine the Munk model and Perlin noise to propose a two-dimensional dynamic seawater sound velocity model generation method,a method that can generate a dynamic,continuous,random seawater sound velocity model with some regularity at large scales.Moreover,the paper discusses the influence of the inhomogeneity characteristics of seawater on wave field propagation and imaging.The results show that the seawater sound velocity model with random disturbance will have a significant influence on the wave field simulation and imaging results.展开更多
This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behavior...This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density.展开更多
基金supported by the China Geological Survey Project“Deep Geological Survey of the Qin-Hang Belt”(No.DD20160082)the National Natural Science Foundation of China(No.41574048)
文摘A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure.
基金Supported by the National Natural Science Foundation of China(No.61401237)the Natural Science Foundation of Tianjin(No.13JCQNJC01200)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130031120034)
文摘A direction-based adaptive switching(DBAS) filter is presented for the removal of high-density impulse noise in images. The extrema detection and 28-directional detection are employed to discriminate the pixels as noisy or noise-free. If a pixel is classified as noisy, it will be replaced by a median or a mean value within an adaptive filter window with respect to different noise densities. Simulation results show that the miss-detection ratio and false-alarm ratio are both very low even at noise level as high as 90%. At the same time, better results are obtained in terms of the qualitative and quantitative measures. The peak signal-to-noise ratios increase by nearly 1 dB compared with other existing algorithms. In addition, the computation time is around 10 s for test images with resolutions of 512×512since the proposed approach has low complexity.
基金supported by The National Natural Science Foundation of China(22276137,52170087)the Fundamental Research Funds for the Central Universities(XJEDU2023Z009).
文摘Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金supported in part by the National Natural Science Foundation of China Project under Grant 62075147the Suzhou Industry Technological Innovation Projects under Grant SYG202348.
文摘Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.
文摘BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF.
基金Project supported by the Research Group of Nonequilibrium Statistics(Grant No.14078206)Kunming University of Science and Technology,China.
文摘In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance of the symmetric BM subjected to Lévy noise.Through numerical simulations,it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise.Without any load,the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current.With a load,the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking.The results of this research are of great significance for opening up BM’s intrinsic physical mechanism and promoting the development of nanotechnology.
基金the support from National Key Research and Development Program of China(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52362049 and 52208446)the Natural Science Foundation of Gansu Province (Grant Nos. 22JR5RA344 and 22JR11RA152)+4 种基金the Special Funds for Guiding Local Scientifi c and Technological Development by the Central Government (Grant No. 22ZY1QA005)the Joint Innovation Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University (Grant No. LH2023016)the Fundamental Research Funds for the Central Universities (2682023ZTZ010), the Lanzhou Science and Technology planning Project (Grant No. 2022-ZD-131)the key Research and Development Project of Lanzhou Jiaotong University (Grant No. LZJTU-ZDYF2302)the University Youth Fund Project of Lanzhou Jiaotong University (Grant No. 2021014)。
文摘The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.
基金supported by the Key R&D Program of Shandong Province(2021CXGC010210).
文摘Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA_(2)5051000)the National Key R&D Program of China(Grant No.2023YFA1608400)+1 种基金the National Natural Science Foundation of China(Grant No.12005008)the Natural Science Foundation of Top Talent of SZTU(Grant No.GDRC202209).
文摘A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ignition(DCI)scheme.Due to the collision of the two low-density plasmas,the density and volume of the high-density plasma vary.Therefore,the ignition temperature and energy requirement of the high-density plasma vary at different moments,and the required energy for hot electrons to heat the plasma also changes.In practical experiments,the energy input of hot electrons needs to be considered.To reduce the energy input of hot electrons,the optimal moment and the shortest time for injecting hot electrons with minimum energy are analyzed.In this paper,it is proposed to inject hot electrons for a short time to heat the high-density plasma to a relatively high temperature.Then,the alpha particles with the high heating rate and PdV work heat the plasma to the ignition temperature,further reducing the energy required to inject hot electrons.The study of the injection time of fast electrons can reduce the energy requirement of fast electrons for the high-density plasma and increase the probability of successful ignition of the high-density plasma.
基金supported by the National Key Research and Development Program of China(2021YFB2011700).
文摘In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a novel hollow tungsten TSV(W-TSV)is presented and developed.The hollow structure provides space for the release of thermal stress.Simulation results showed that the hollow W-TSV structure can release 60.3%of thermal stress within the top 2 lm from the surface,and thermal stress can be decreased to less than 20 MPa in the radial area of 3 lm.The ultra-high-density(1600 TSV∙mm2)TSV array with a size of 640×512,a pitch of 25 lm,and an aspect ratio of 20.3 was fabricated,and the test results demonstrated that the proposed TSV has excellent electrical and reliability performances.The average resistance of the TSV was 1.21 X.The leakage current was 643 pA and the breakdown voltage was greater than 100 V.The resistance change is less than 2%after 100 temperature cycles from40 to 125℃.Raman spectroscopy showed that the maximum stress on the wafer surface caused by the hollow W-TSV was 31.02 MPa,which means that there was no keep-out zone(KOZ)caused by the TSV array.These results indicate that this structure has great potential for applications in large-array photodetectors and 3D integrated circuits.
基金the National Natural Science Foundation of China(32201338)Science Technology Program from the Forestry Administration of Guangdong Province(2021KJCX017)+1 种基金Guangzhou Municipal Science and Technology Bureau Program(2023A04J0086)Shenzhen Key Laboratory of Southern Subtropical Plant Diversity。
文摘As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
基金the National Nat-ural Science Foundation of China(Grant Nos.62071248 and 62201284)the Graduate Scientific Re-search and Innovation Program of Jiangsu Province(Grant No.KYCX241119).
文摘Social networks are inevitably subject to disruptions from the physical world,such as sudden internet outages that sever local connections and impede information flow.While Gaussian white noise,commonly used to simulate stochastic disruptions,only fluctuates within a narrow range around its mean and fails to capture large-scale variations,L´evy noise can effectively compensate for this limitation.Therefore,a susceptible–infected–removed rumor propagation model with L´evy noise is constructed on homogeneous and heterogeneous networks,respectively.Then,the existence of a global positive solution and the asymptotic path-wise of the solution are derived on heterogeneous networks,and the sufficient conditions of rumor extinction and persistence are investigated.Subsequently,theoretical results are verified through numerical calculations and the sensitivity analysis related to the threshold is conducted on the model parameters.Through simulation experiments on Watts–Strogatz(WS)and Barab´asi–Albert networks,it is found that the addition of noise can inhibit the spread of rumors,resulting in a stochastic resonance phenomenon,and the optimal noise intensity is obtained on the WS network.The validity of the model is verified on three real datasets by particle swarm optimization algorithm.
基金supported by Beijing Natural Science Foundation (L202003)。
文摘This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.
基金The General Program of National Natural Science Foundation of China under contract No.42074150。
文摘In the processing of conventional marine seismic data,seawater is often assumed to have a constant velocity model.However,due to static pressure,temperature difference and other factors,random disturbances may often frequently in seawater bodies.The impact of such disturbances on data processing results is a topic of theoretical research.Since seawater sound velocity is a difficult physical quantity to measure,there is a need for a method that can generate models conforming to seawater characteristics.This article will combine the Munk model and Perlin noise to propose a two-dimensional dynamic seawater sound velocity model generation method,a method that can generate a dynamic,continuous,random seawater sound velocity model with some regularity at large scales.Moreover,the paper discusses the influence of the inhomogeneity characteristics of seawater on wave field propagation and imaging.The results show that the seawater sound velocity model with random disturbance will have a significant influence on the wave field simulation and imaging results.
基金the National Natural Science Foundation of China(Grant No.62273033).
文摘This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density.