Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy o...Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.展开更多
Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high d...Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used.展开更多
In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method ...In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.展开更多
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100...The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.展开更多
High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the do...High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the double-electrode approach.Due to the impact of the complex geoelectric environment,the electric potential and the electric potential difference are not sensitive enough to respond to minimal leakage.The tiny leaking area cannot be precisely located using the electric potential and electric potential difference.Using the COMSOL Multiphysics software,this study created a standard geoelectric model of the double-electrode method.We calculated a new parameter—the G parameter through secondary electric potential difference—based on the response characteristics of the electric potential and the electric potential difference while the HDPEfilm is leaking.The experiment demonstrates that the G parameter is more sensitive than the electric potential and electric potential difference for detecting the leaking area of HDPE film.The G parameter is more effective at detecting leakage than the electric potential and electric potential difference.The results of this study can be used to locate HDPEfilm leakage areas in a landfill.展开更多
Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating w...Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.展开更多
In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improv...In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM.展开更多
In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. T...In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.展开更多
High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan...High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.展开更多
High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of w...High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials.展开更多
A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased sl...A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.展开更多
The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystalli...The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate's ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.展开更多
Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic me...Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic mechanical and thermal properties are studied.The influence of ramie fiber and maleic anhydride-grafted polyolefin(MA-g-PO)on mechanical,dynamic mechanical and thermal properties is investigated.It is observed that the tensile,flexural and impact properties of the composites treated with MA-g-PO are all improved in comparison to the untreated composites.Dynamic mechanical properties of the composite with MA-g-PO show an increase in the storage modulus with a higherαrelaxation peak,together with the micromorphology analysis,indicating an improved interfacial bonding between fiber and matrix by the MA-g-PO addition.Furthermore,the change in TGA thermograms of composite caused by MA-g-PO exhibits that the addition of MA-g-PO is also helpful to increase the thermal stability of noil ramie fiber/HDPE composites.展开更多
In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in ri...In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in rice production. The effects of high density polyethylene (HDPE) film on increasing rice production, controlling weeds and residue amount of plastic were studied under five treatments, including 5, 10, 15 and 20 μm thickness as well as bare cultivation (CK). The results indicated that the HDPE film mulching mode had significant effects on weed control, soil temperature, soil moisture, photosynthetic rate, seedling biomass, yield and residues of plastic film. Combined with economic effect, it showed that the HDPE film of 10 μm is the best option for rice production.展开更多
Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were ...Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were pyrolyzed in the temperature range of 550°C - 1050°C under H2, N2 and Ar gases. Taguchi Optimization technique was applied to find out the best operating conditions to get maximum yield of carbon nano material (CNM). For Taguchi op- timization, experimental set up was done in two different temperature ranges i.e. 550°C - 750°C and 850°C - 1050°C. CNMs synthesized were characterized by SEM, TEM, Micro Raman and XRD analysis. HDPE was found to yield maximum CNM. Its pyrolysis at 750°C under hydrogen atmosphere for 2h gave carbon nano beads and some carbon nano tubes. Whereas under same conditions at 1050°C more multi wall carbon nano tubes (MWCNT) were produced, with some carbon nano beads. XRD data confirmed the graphitic nature of carbon-nanotube. The intensities of G-band and D-band of Raman spectra suggested that CNM has more defect sites and spectra were similar for CNM obtained in both the temperature ranges. The TGA analysis of CNM obtained at 550°C - 750°C, indicated that they are not amor- phous carbon and CNM obtained at 850°C - 1050°C decomposed at 624°C - 668°C;suggesting that CNT synthesized at this temperature range were more crystalline than what was obtained at the 550°C - 750°C.展开更多
Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of e...Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of engine oil on the consistency and thermal properties of HDPE-modified asphalt. For this study, compositions containing asphalt, engine oil and high-density polyethylene (HDPE) were prepared, varying the concentration of engine oil by 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% and keeping the concentration of HDPE at 5 wt%. The samples were characterized by conventional tests of penetration, softening point and viscosity, aging in a Rotational Thin Film Oven (RTFO), Thermogravimetric Analysis (TGA). According to the results, the addition of HDPE to virgin asphalt causes an increase in the consistency of the virgin asphalt, which then decreases linearly as the engine oil is added into the matrix. Conventional tests showed improvements in the applicability of the asphalt in terms of resistance to cracks and permanent deformation. TGA showed a slight increase in stability for the modified asphalt samples at elevated temperatures. The RTFO showed mass gain and loss for samples with and without engine oil, respectively.展开更多
In this study, we investigated the performance improvement caused by the addition of copper(Cu)nanoparticles to high-density polyethylene(HDPE) matrix material. Composite materials, with filler percentages of 0.0, 2.0...In this study, we investigated the performance improvement caused by the addition of copper(Cu)nanoparticles to high-density polyethylene(HDPE) matrix material. Composite materials, with filler percentages of 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 wt% were synthesized through the material extrusion(MEX)3D printing technique. The synthesized nanocomposite filaments were utilized for the manufacturing of specimens suitable for the experimental procedure that followed. Hence, we were able to systematically investigate their tensile, flexural, impact, and microhardness properties through various mechanical tests that were conducted according to the corresponding standards. Broadband Dielectric Spectroscopy was used to investigate the electrical/dielectric properties of the composites. Moreover, by employing means of Raman spectroscopy and thermogravimetric analysis(TGA) we were also able to further investigate their vibrational, structural, and thermal properties. Concomitantly, means of scanning electron microscopy(SEM), as well as atomic force microscopy(AFM), were used for the examination of the morphological and structural characteristics of the synthesized specimens, while energy-dispersive Xray spectroscopy(EDS) was also performed in order to receive a more detailed picture on the structural characteristics of the various synthesized composites. The corresponding nanomaterials were also assessed for their antibacterial properties regarding Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) with the assistance of a method named screening agar well diffusion. The results showed that the mechanical properties of HDPE benefited from the utilization of Cu as a filler, as they showed a notable improvement. The specimen of HDPE/Cu 4.0 wt% was the one that presented the highest levels of reinforcement in four out of the seven tested mechanical properties(for example, it exhibited a 36.7%improvement in the flexural strength, compared to the pure matrix). At the same time, the nanocomposites were efficient against the S. aureus bacterium and less efficient against the E. coli bacterium.The use of such multi-functional, robust nanocomposites in MEX 3D printing is positively impacting applications in various fields, most notably in the defense and security sectors. The latter becomes increasingly important if one takes into account that most firearms encompass various polymeric parts that require robustness and improved mechanical properties, while at the same time keeping the risk of spreading various infectious microorganisms at a bare minimum.展开更多
基金Supported by the National Natural Science Foundation of China (61074153, 61104131)the Fundamental Research Fundsfor Central Universities of China (ZY1111, JD1104)
文摘Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.
文摘Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used.
文摘In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.
文摘The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2019YFC1510802 and 2019YFC1804302)the National Natural Science Foundation of China (Grant No. 41504081)the Fundamental Research Funds for the Central Universities (Grant No. 2019B17214)。
文摘High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the double-electrode approach.Due to the impact of the complex geoelectric environment,the electric potential and the electric potential difference are not sensitive enough to respond to minimal leakage.The tiny leaking area cannot be precisely located using the electric potential and electric potential difference.Using the COMSOL Multiphysics software,this study created a standard geoelectric model of the double-electrode method.We calculated a new parameter—the G parameter through secondary electric potential difference—based on the response characteristics of the electric potential and the electric potential difference while the HDPEfilm is leaking.The experiment demonstrates that the G parameter is more sensitive than the electric potential and electric potential difference for detecting the leaking area of HDPE film.The G parameter is more effective at detecting leakage than the electric potential and electric potential difference.The results of this study can be used to locate HDPEfilm leakage areas in a landfill.
基金supported by the National Natural Science Foundation of China[31670573]the Innovation Training Program of Northeast Forestry University[201810225398].
文摘Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.
文摘In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM.
文摘In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.
文摘High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.
基金supported by the sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C389)the Xinjiang University Doctoral Start-Up Foundation(No.620321029)the Science and Technology Planning Project of State Administration for Market Regulation(No.2022MK201).
文摘High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials.
文摘A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.
基金Project(20050335050) supported by the Special Foundation of Education Ministry of ChinaProject(10472105) supported by the National Natural Science Foundation of China
文摘The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate's ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.
基金supported by the National Scientific and Technical Supporting 12th Five-year Plan Project(No.2012BAD23B0203)
文摘Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic mechanical and thermal properties are studied.The influence of ramie fiber and maleic anhydride-grafted polyolefin(MA-g-PO)on mechanical,dynamic mechanical and thermal properties is investigated.It is observed that the tensile,flexural and impact properties of the composites treated with MA-g-PO are all improved in comparison to the untreated composites.Dynamic mechanical properties of the composite with MA-g-PO show an increase in the storage modulus with a higherαrelaxation peak,together with the micromorphology analysis,indicating an improved interfacial bonding between fiber and matrix by the MA-g-PO addition.Furthermore,the change in TGA thermograms of composite caused by MA-g-PO exhibits that the addition of MA-g-PO is also helpful to increase the thermal stability of noil ramie fiber/HDPE composites.
文摘In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in rice production. The effects of high density polyethylene (HDPE) film on increasing rice production, controlling weeds and residue amount of plastic were studied under five treatments, including 5, 10, 15 and 20 μm thickness as well as bare cultivation (CK). The results indicated that the HDPE film mulching mode had significant effects on weed control, soil temperature, soil moisture, photosynthetic rate, seedling biomass, yield and residues of plastic film. Combined with economic effect, it showed that the HDPE film of 10 μm is the best option for rice production.
文摘Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were pyrolyzed in the temperature range of 550°C - 1050°C under H2, N2 and Ar gases. Taguchi Optimization technique was applied to find out the best operating conditions to get maximum yield of carbon nano material (CNM). For Taguchi op- timization, experimental set up was done in two different temperature ranges i.e. 550°C - 750°C and 850°C - 1050°C. CNMs synthesized were characterized by SEM, TEM, Micro Raman and XRD analysis. HDPE was found to yield maximum CNM. Its pyrolysis at 750°C under hydrogen atmosphere for 2h gave carbon nano beads and some carbon nano tubes. Whereas under same conditions at 1050°C more multi wall carbon nano tubes (MWCNT) were produced, with some carbon nano beads. XRD data confirmed the graphitic nature of carbon-nanotube. The intensities of G-band and D-band of Raman spectra suggested that CNM has more defect sites and spectra were similar for CNM obtained in both the temperature ranges. The TGA analysis of CNM obtained at 550°C - 750°C, indicated that they are not amor- phous carbon and CNM obtained at 850°C - 1050°C decomposed at 624°C - 668°C;suggesting that CNT synthesized at this temperature range were more crystalline than what was obtained at the 550°C - 750°C.
文摘Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of engine oil on the consistency and thermal properties of HDPE-modified asphalt. For this study, compositions containing asphalt, engine oil and high-density polyethylene (HDPE) were prepared, varying the concentration of engine oil by 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% and keeping the concentration of HDPE at 5 wt%. The samples were characterized by conventional tests of penetration, softening point and viscosity, aging in a Rotational Thin Film Oven (RTFO), Thermogravimetric Analysis (TGA). According to the results, the addition of HDPE to virgin asphalt causes an increase in the consistency of the virgin asphalt, which then decreases linearly as the engine oil is added into the matrix. Conventional tests showed improvements in the applicability of the asphalt in terms of resistance to cracks and permanent deformation. TGA showed a slight increase in stability for the modified asphalt samples at elevated temperatures. The RTFO showed mass gain and loss for samples with and without engine oil, respectively.
文摘In this study, we investigated the performance improvement caused by the addition of copper(Cu)nanoparticles to high-density polyethylene(HDPE) matrix material. Composite materials, with filler percentages of 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 wt% were synthesized through the material extrusion(MEX)3D printing technique. The synthesized nanocomposite filaments were utilized for the manufacturing of specimens suitable for the experimental procedure that followed. Hence, we were able to systematically investigate their tensile, flexural, impact, and microhardness properties through various mechanical tests that were conducted according to the corresponding standards. Broadband Dielectric Spectroscopy was used to investigate the electrical/dielectric properties of the composites. Moreover, by employing means of Raman spectroscopy and thermogravimetric analysis(TGA) we were also able to further investigate their vibrational, structural, and thermal properties. Concomitantly, means of scanning electron microscopy(SEM), as well as atomic force microscopy(AFM), were used for the examination of the morphological and structural characteristics of the synthesized specimens, while energy-dispersive Xray spectroscopy(EDS) was also performed in order to receive a more detailed picture on the structural characteristics of the various synthesized composites. The corresponding nanomaterials were also assessed for their antibacterial properties regarding Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) with the assistance of a method named screening agar well diffusion. The results showed that the mechanical properties of HDPE benefited from the utilization of Cu as a filler, as they showed a notable improvement. The specimen of HDPE/Cu 4.0 wt% was the one that presented the highest levels of reinforcement in four out of the seven tested mechanical properties(for example, it exhibited a 36.7%improvement in the flexural strength, compared to the pure matrix). At the same time, the nanocomposites were efficient against the S. aureus bacterium and less efficient against the E. coli bacterium.The use of such multi-functional, robust nanocomposites in MEX 3D printing is positively impacting applications in various fields, most notably in the defense and security sectors. The latter becomes increasingly important if one takes into account that most firearms encompass various polymeric parts that require robustness and improved mechanical properties, while at the same time keeping the risk of spreading various infectious microorganisms at a bare minimum.