期刊文献+
共找到4,496篇文章
< 1 2 225 >
每页显示 20 50 100
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
1
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 high-dimensional covariance Matrix Missing Data Sub-Gaussian Noise Optimal Estimation
下载PDF
3-D Gait Identification Utilizing Latent Canonical Covariates Consisting of Gait Features 被引量:1
2
作者 Ramiz Gorkem Birdal Ahmet Sertbas 《Computers, Materials & Continua》 SCIE EI 2023年第9期2727-2744,共18页
Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’walking patterns to be recognized.Existing research in this area has primarily focused on fe... Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’walking patterns to be recognized.Existing research in this area has primarily focused on feature analysis through the extraction of individual features,which captures most of the information but fails to capture subtle variations in gait dynamics.Therefore,a novel feature taxonomy and an approach for deriving a relationship between a function of one set of gait features with another set are introduced.The gait features extracted from body halves divided by anatomical planes on vertical,horizontal,and diagonal axes are grouped to form canonical gait covariates.Canonical Correlation Analysis is utilized to measure the strength of association between the canonical covariates of gait.Thus,gait assessment and identification are enhancedwhenmore semantic information is available through CCA-basedmulti-feature fusion.Hence,CarnegieMellon University’s 3D gait database,which contains 32 gait samples taken at different paces,is utilized in analyzing gait characteristics.The performance of Linear Discriminant Analysis,K-Nearest Neighbors,Naive Bayes,Artificial Neural Networks,and Support Vector Machines was improved by a 4%average when the CCA-utilized gait identification approachwas used.Asignificant maximumaccuracy rate of 97.8%was achieved throughCCA-based gait identification.Beyond that,the rate of false identifications and unrecognized gaits went down to half,demonstrating state-of-the-art for gait identification. 展开更多
关键词 Gait identification canonical covariates multivariate data analysis gait determinant
下载PDF
Low-Complexity Reconstruction of Covariance Matrix in Hybrid Uniform Circular Array
3
作者 Fu Zihao Liu Yinsheng Duan Hongtao 《China Communications》 SCIE CSCD 2024年第3期66-74,共9页
Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital struc... Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach. 展开更多
关键词 hybrid array MILLIMETER-WAVE spatial covariance matrix uniform circular array
下载PDF
Data-Based Filters for Non-Gaussian Dynamic Systems With Unknown Output Noise Covariance
4
作者 Elham Javanfar Mehdi Rahmani 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期866-877,共12页
This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown cova... This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches. 展开更多
关键词 Data-based filter maximum likelihood estimation unknown covariance weighted maximum likelihood estimation weighted sum-of-norms clustering
下载PDF
Robustness of the octupole collectivity in 144Ba within the cranking covariant density functional theory in 3D lattice
5
作者 Ze‑Kai Li Yuan‑Yuan Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期124-131,共8页
The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition... The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h). 展开更多
关键词 Octupole collectivity Cranking covariant density functional theory Rotational spectrum Electric transitional probabilities
下载PDF
Moments of inertia of triaxial nuclei in covariant density functional theory
6
作者 Yu-Meng Wang Qi-Bo Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第10期197-207,共11页
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ... The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations. 展开更多
关键词 Moment of inertia Trixial nucleus covariant density functional theory Five-dimensional collective Hamiltonian Low-lying energy spectrum
下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
7
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
下载PDF
An integrated method of selecting environmental covariates for predictive soil depth mapping 被引量:7
8
作者 LU Yuan-yuan LIU Feng +2 位作者 ZHAO Yu-guo SONG Xiao-dong ZHANG Gan-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第2期301-315,共15页
Environmental covariates are the basis of predictive soil mapping.Their selection determines the performance of soil mapping to a great extent,especially in cases where the number of soil samples is limited but soil s... Environmental covariates are the basis of predictive soil mapping.Their selection determines the performance of soil mapping to a great extent,especially in cases where the number of soil samples is limited but soil spatial heterogeneity is high.In this study,we proposed an integrated method to select environmental covariates for predictive soil depth mapping.First,candidate variables that may influence the development of soil depth were selected based on pedogenetic knowledge.Second,three conventional methods(Pearson correlation analysis(PsCA),generalized additive models(GAMs),and Random Forest(RF))were used to generate optimal combinations of environmental covariates.Finally,three optimal combinations were integrated to produce a final combination based on the importance and occurrence frequency of each environmental covariate.We tested this method for soil depth mapping in the upper reaches of the Heihe River Basin in Northwest China.A total of 129 soil sampling sites were collected using a representative sampling strategy,and RF and support vector machine(SVM)models were used to map soil depth.The results showed that compared to the set of environmental covariates selected by the three conventional selection methods,the set of environmental covariates selected by the proposed method achieved higher mapping accuracy.The combination from the proposed method obtained a root mean square error(RMSE)of 11.88 cm,which was 2.25–7.64 cm lower than the other methods,and an R^2 value of 0.76,which was 0.08–0.26 higher than the other methods.The results suggest that our method can be used as an alternative to the conventional methods for soil depth mapping and may also be effective for mapping other soil properties. 展开更多
关键词 ENVIRONMENTAL covariATE selection integrated method PREDICTIVE SOIL MAPPING SOIL depth
下载PDF
Chip-Based High-Dimensional Optical Neural Network 被引量:6
9
作者 Xinyu Wang Peng Xie +1 位作者 Bohan Chen Xingcai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期570-578,共9页
Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high paralleliz... Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing. 展开更多
关键词 Integrated optics Optical neural network high-dimension Mach-Zehnder interferometer Nonlinear activation function Parallel high-capacity analog computing
下载PDF
A case-based method of selecting covariates for digital soil mapping 被引量:2
10
作者 LIANG Peng QIN Cheng-zhi +3 位作者 ZHU A-xing HOU Zhi-wei FAN Nai-qing WANG Yi-jie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期2127-2136,共10页
Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not avail... Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples.To solve the problem,this paper proposed a case-based method which could formalize the covariate selection knowledge contained in practical DSM applications.The proposed method trained Random Forest(RF)classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application.In this study,we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer-reviewed journal articles to evaluate the performance of the proposed case-based method by Leave-One-Out cross validation.Compared with a novices’commonly-used way of selecting DSM covariates,the proposed case-based method improved more than 30%accuracy according to three quantitative evaluation indices(i.e.,recall,precision,and F1-score).The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains,such as landslide susceptibility mapping,and species distribution modeling. 展开更多
关键词 digital soil mapping covariates case-based reasoning Random Forest
下载PDF
Hypergraph High-Dimension Clustering Algorithm for Optimized Cooperative Wireless Multicast 被引量:1
11
作者 Chen Yueyun Liu Wei Lin Fuhong Zhou Xianwei 《China Communications》 SCIE CSCD 2012年第8期135-139,共5页
In order to guarantee the wireless multicast throughput at a minimum cost, we propose a layered hypergraph high-dimension clustering algorithm (LayerHC) considering the channels and statistical locations of mobile mem... In order to guarantee the wireless multicast throughput at a minimum cost, we propose a layered hypergraph high-dimension clustering algorithm (LayerHC) considering the channels and statistical locations of mobile members. The algorithm can achieve a minimum multicast spanning tree to obtain a minimum number of relays and effective cooperative areas with low computational complexity. 展开更多
关键词 cooperative wireless multicast HYPERGRAPH high-dimension clustering
下载PDF
Image segmentation algorithm based on high-dimension fuzzy character and restrained clustering network 被引量:2
12
作者 Baoping Wang Yang Fang Chao Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第2期298-306,共9页
An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification ... An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance. 展开更多
关键词 image segmentation high-dimension fuzzy character restrained fuzzy Kohonen clustering network (RFKCN).
下载PDF
Random Subspace Learning Approach to High-Dimensional Outliers Detection 被引量:1
13
作者 Bohan Liu Ernest Fokoué 《Open Journal of Statistics》 2015年第6期618-630,共13页
We introduce and develop a novel approach to outlier detection based on adaptation of random subspace learning. Our proposed method handles both high-dimension low-sample size and traditional low-dimensional high-samp... We introduce and develop a novel approach to outlier detection based on adaptation of random subspace learning. Our proposed method handles both high-dimension low-sample size and traditional low-dimensional high-sample size datasets. Essentially, we avoid the computational bottleneck of techniques like Minimum Covariance Determinant (MCD) by computing the needed determinants and associated measures in much lower dimensional subspaces. Both theoretical and computational development of our approach reveal that it is computationally more efficient than the regularized methods in high-dimensional low-sample size, and often competes favorably with existing methods as far as the percentage of correct outlier detection are concerned. 展开更多
关键词 high-dimensionAL Robust OUTLIER DETECTION Contamination Large p Small n Random Subspace Method Minimum covariANCE DETERMINANT
下载PDF
Calculation of microscopic nuclear level densities based on covariant density functional theory 被引量:3
14
作者 Kun-Peng Geng Peng-Xiang Du +1 位作者 Jian Li Dong-Liang Fang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第9期118-127,共10页
In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth... In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data. 展开更多
关键词 Nuclear level density covariant density functional theory Combinatorial method
下载PDF
Marginal Distribution Plots for Proportional Hazards Models with Time-Dependent Covariates or Time-Varying Regression Coefficients
15
作者 Qiqing Yu Junyi Dong George Wong 《Open Journal of Statistics》 2017年第1期92-111,共20页
Given a sample of regression data from (Y, Z), a new diagnostic plotting method is proposed for checking the hypothesis H0: the data are from a given Cox model with the time-dependent covariates Z. It compares two est... Given a sample of regression data from (Y, Z), a new diagnostic plotting method is proposed for checking the hypothesis H0: the data are from a given Cox model with the time-dependent covariates Z. It compares two estimates of the marginal distribution FY of Y. One is an estimate of the modified expression of FY under H0, based on a consistent estimate of the parameter under H0, and based on the baseline distribution of the data. The other is the Kaplan-Meier-estimator of FY, together with its confidence band. The new plot, called the marginal distribution plot, can be viewed as a test for testing H0. The main advantage of the test over the existing residual tests is in the case that the data do not satisfy any Cox model or the Cox model is mis-specified. Then the new test is still valid, but not the residual tests and the residual tests often make type II error with a very large probability. 展开更多
关键词 Cox’s Model TIME-DEPENDENT covariATE SEMI-PARAMETRIC SET-UP Diagnostic PLOT
下载PDF
A Simulation Study on Comparing General Class of Semiparametric Transformation Models for Survival Outcome with Time-Varying Coefficients and Covariates
16
作者 Yemane Hailu Fissuh Tsegay Giday Woldu +1 位作者 Idriss Abdelmajid Idriss Ahmed Abebe Zewdie Kebebe 《Open Journal of Statistics》 2019年第2期169-180,共12页
The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametr... The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible. 展开更多
关键词 Estimating Equation SEMIPARAMETRIC Transformation Models TIME-TO-EVENT Outcomes TIME-VARYING COEFFICIENTS TIME-VARYING covariATE
下载PDF
Imputed Empirical Likelihood for Varying Coefficient Models with Missing Covariates
17
作者 Peixin Zhao 《Open Journal of Applied Sciences》 2013年第1期44-48,共5页
The empirical likelihood-based inference for varying coefficient models with missing covariates is investigated. An imputed empirical likelihood ratio function for the coefficient functions is proposed, and it is show... The empirical likelihood-based inference for varying coefficient models with missing covariates is investigated. An imputed empirical likelihood ratio function for the coefficient functions is proposed, and it is shown that iis limiting distribution is standard chi-squared. Then the corresponding confidence intervals for the regression coefficients are constructed. Some simulations show that the proposed procedure can attenuate the effect of the missing data, and performs well for the finite sample. 展开更多
关键词 Empirical LIKELIHOOD VARYING COEFFICIENT Model MISSING covariATE
下载PDF
Dimension Reduction for Detecting a Difference in Two High-Dimensional Mean Vectors
18
作者 Whitney V. Worley Dean M. Young Phil D. Young 《Open Journal of Statistics》 2021年第1期243-257,共15页
We consider the efficacy of a proposed linear-dimension-reduction method to potentially increase the powers of five hypothesis tests for the difference of two high-dimensional multivariate-normal population-mean vecto... We consider the efficacy of a proposed linear-dimension-reduction method to potentially increase the powers of five hypothesis tests for the difference of two high-dimensional multivariate-normal population-mean vectors with the assumption of homoscedastic covariance matrices. We use Monte Carlo simulations to contrast the empirical powers of the five high-dimensional tests by using both the original data and dimension-reduced data. From the Monte Carlo simulations, we conclude that a test by Thulin [1], when performed with post-dimension-reduced data, yielded the best omnibus power for detecting a difference between two high-dimensional population-mean vectors. We also illustrate the utility of our dimension-reduction method real data consisting of genetic sequences of two groups of patients with Crohn’s disease and ulcerative colitis. 展开更多
关键词 Homoscedastic covariance Matrices Test Power Monte Carlo Simulation Moore-Penrose Inverse Singular Value Decomposition
下载PDF
THE SEMI-DISCREIXTE METHOD FOR SOLVING HIGH-DIMENSION WAVE EQUATION
19
作者 吴建成 蔡日增 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期489-495,共7页
The article gives a semi-discrete method for solving high-dimension wave equationBy the method, high-dimension wave equation is converted by, means of diseretizationinto I-D wave equation system which is well-posed. T... The article gives a semi-discrete method for solving high-dimension wave equationBy the method, high-dimension wave equation is converted by, means of diseretizationinto I-D wave equation system which is well-posed. The convergence of the semidijcrete method is given. The numerical calculating resulis show that the speed of convergence is high. 展开更多
关键词 semi-discrete method. high-dimension wave equation well-posed convergence
下载PDF
Recent advances in statistical methodologies in evaluating program for high-dimensional data
20
作者 ZHAN Ming-feng CAI Zong-wu +1 位作者 FANG Ying LIN Ming 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期131-146,共16页
The era of big data brings opportunities and challenges to developing new statistical methods and models to evaluate social programs or economic policies or interventions. This paper provides a comprehensive review on... The era of big data brings opportunities and challenges to developing new statistical methods and models to evaluate social programs or economic policies or interventions. This paper provides a comprehensive review on some recent advances in statistical methodologies and models to evaluate programs with high-dimensional data. In particular, four kinds of methods for making valid statistical inferences for treatment effects in high dimensions are addressed. The first one is the so-called doubly robust type estimation, which models the outcome regression and propensity score functions simultaneously. The second one is the covariate balance method to construct the treatment effect estimators. The third one is the sufficient dimension reduction approach for causal inferences. The last one is the machine learning procedure directly or indirectly to make statistical inferences to treatment effect. In such a way, some of these methods and models are closely related to the de-biased Lasso type methods for the regression model with high dimensions in the statistical literature. Finally, some future research topics are also discussed. 展开更多
关键词 causal inference covariate balance de-biased Lasso dimension reduction doubly robust high dimensions machine learning treatment effect
下载PDF
上一页 1 2 225 下一页 到第
使用帮助 返回顶部