This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitu...The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.展开更多
We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We ...We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.展开更多
We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurement...We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.展开更多
A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random an...A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random and secret polarization angles. The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.展开更多
The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the re...The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the receiver. The receiver performs the unitary transformations and makes projective measurements on his particles to obtain the secret information. Using teleportation, the transmission of three-qubit secret information can be completed in each quantum channel展开更多
Due to the unavoidable interaction between the quantum channel and its ambient environment,it is difficult to generate and maintain the maximally entanglement.Thus,the research on multiparty information transmission v...Due to the unavoidable interaction between the quantum channel and its ambient environment,it is difficult to generate and maintain the maximally entanglement.Thus,the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application.Here,we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously.The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability.In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels,we put forward the second scheme,which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers.In particular,its success probability can reach 100%in principle,and independent of the entanglement degree of the shared non-maximally entangled channel.Notably,in the second scheme,the auxiliary particle is not required.展开更多
We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequen...We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.展开更多
Based on x-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on x-type entangled stat...Based on x-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on x-type entangled states |X00〉3214 is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed.展开更多
In the paper [2010 Chin. Phys. B 19 050306], Yang et al. put forward a novel three-party quantum secret sharing protocol of secure direct communication based on x-type entangled states, they claimed that the scheme is...In the paper [2010 Chin. Phys. B 19 050306], Yang et al. put forward a novel three-party quantum secret sharing protocol of secure direct communication based on x-type entangled states, they claimed that the scheme is secure. However, in this paper, we study the security of the protocol and find that it is insecure. Applying intercept and resend attack, the agent Bob can obtain Alice's secret without the help from the other agent Charlie. In the end, we give our effective modification for its improvement.展开更多
We present in this paper a quantum secure direct communication (QSDC) protocol by using partially entangled states. In the scheme a third party (Trent) is introduced to authenticate the participants. After authent...We present in this paper a quantum secure direct communication (QSDC) protocol by using partially entangled states. In the scheme a third party (Trent) is introduced to authenticate the participants. After authentication, Alice can directly, deterministically and successfully send a secret message to Bob. The security of the scheme is also discussed and confirmed.展开更多
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communic...To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.展开更多
A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages be...A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state A-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.展开更多
This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 ...This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.展开更多
Effects of photon addition on the quantum nonlocality of squeezed entangled coherent states for Bell-inequality tests are studied theoretically. By utilizing the method of photon-parity measurement, it is found that p...Effects of photon addition on the quantum nonlocality of squeezed entangled coherent states for Bell-inequality tests are studied theoretically. By utilizing the method of photon-parity measurement, it is found that photon addition can always increase the degrees of Bell violations within a certain parameter range. A possible scheme for generating photon-added squeezed entangled coherent states is proposed.展开更多
This paper reconsiders carefully the possibility of using the Smolin bound entangled states as the carrier for sharing quantum secret. It finds that the process of quantum secret sharing based on Smolin states has ins...This paper reconsiders carefully the possibility of using the Smolin bound entangled states as the carrier for sharing quantum secret. It finds that the process of quantum secret sharing based on Smolin states has insecurity though the Smolin state was reported to violate maximally the two-setting Bell-inequlity. The general proof is given.展开更多
In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomi...In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomic internal states and coherent states of cavity field. We also discuss the methods of distinguishing coherent states [±α〉 in a cavity. Finally, a brief discussion about the feasibility of this scheme in experiment is presented.展开更多
We present a controlled secure quantum communication protocol using non-maximally (pure) entangled W states first, and then discuss the basic requirements for a real quantum communication. We show that the authorize...We present a controlled secure quantum communication protocol using non-maximally (pure) entangled W states first, and then discuss the basic requirements for a real quantum communication. We show that the authorized two users can exchange their secret messages with the help of the controller after purifying the non-maximally entangled states quantum channel unconditionally securely and simultaneously. Our quantum communication protocol seems even more feasible within present technologies.展开更多
In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent qua...In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent quantum states, implying that quantum states lose their identities when they get entangled. This is contrary to the observation that a composition of entangled quantum states decays back to its constituent quantum states. To eliminate this discrepancy, this paper introduces a new type of numbers, called virtual numbers, which produce zero upon multiplication with complex numbers. In the proposed formalism of quantum states, probability amplitudes of quantum states are general numbers made of complex and virtual numbers. A composition of entangled quantum states, such as a Bell state, can then be decomposed into its constituent quantum states, implying that quantum states retain their identities when they get entangled.展开更多
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state t...This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
文摘The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.
基金The project supported by National Natural Science Foundation of China under Grant No. 10575017
文摘We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.
文摘We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60472018 and 10547125
文摘A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random and secret polarization angles. The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.
基金supported by the National Natural Science Foundation of China under Grant No.10704011the Research Programs of the Educational Office of Liaoning Province under Grant No.2008006
文摘The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the receiver. The receiver performs the unitary transformations and makes projective measurements on his particles to obtain the secret information. Using teleportation, the transmission of three-qubit secret information can be completed in each quantum channel
基金Project supported by the Key Industry Projects in Shaanxi Province,China(Grant Nos.2019ZDLGY09-03 and 2020ZDLGY15-09)the National Natural Science Foundation of China(Grant Nos.61771296,61372076,and 61301171)+1 种基金the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2018JM60-53 and 2018JZ60-06)the 111 Project(Grant B08038).
文摘Due to the unavoidable interaction between the quantum channel and its ambient environment,it is difficult to generate and maintain the maximally entanglement.Thus,the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application.Here,we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously.The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability.In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels,we put forward the second scheme,which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers.In particular,its success probability can reach 100%in principle,and independent of the entanglement degree of the shared non-maximally entangled channel.Notably,in the second scheme,the auxiliary particle is not required.
基金Project supported by the National Natural Science Foundation of China (Grant No 10847147)the Natural Science Foundation of Jiangsu Province (Grant No BK2008437)+1 种基金Jiangsu Provincial Universities (Grant No 07KJB510066)the Science Foundation of Nanjing University of Information Science and Technology
文摘We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.
基金Project supported by the National High-Tech Research and Development Program of China (Grant Nos. 2006AA01Z440,2009AA012441 and 2009AA012437)National Basic Research Program of China (Grant No. 2007CB311100)+4 种基金the National Natural Science Foundation of China (Grant Nos. 60873191 and 60821001)the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004)Beijing Natural Science Foundation (Grant Nos. 1093015 and 1102004)the ISN Open FoundationSpecialized Research Fund for the Doctoral Programm of Higher Education (Grant No. 20091103120014)
文摘Based on x-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on x-type entangled states |X00〉3214 is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.60970140)
文摘In the paper [2010 Chin. Phys. B 19 050306], Yang et al. put forward a novel three-party quantum secret sharing protocol of secure direct communication based on x-type entangled states, they claimed that the scheme is secure. However, in this paper, we study the security of the protocol and find that it is insecure. Applying intercept and resend attack, the agent Bob can obtain Alice's secret without the help from the other agent Charlie. In the end, we give our effective modification for its improvement.
基金Project supported by National Natural Science Foundation of China (Grant No 10534030).
文摘We present in this paper a quantum secure direct communication (QSDC) protocol by using partially entangled states. In the scheme a third party (Trent) is introduced to authenticate the participants. After authentication, Alice can directly, deterministically and successfully send a secret message to Bob. The security of the scheme is also discussed and confirmed.
基金supported by the National Natural Science Foundation of China(Grant Nos.61072067 and 61372076)the 111 Project(Grant No.B08038)+1 种基金the Fund from the State Key Laboratory of Integrated Services Networks(Grant No.ISN 1001004)the Fundamental Research Funds for the Central Universities(Grant Nos.K5051301059 and K5051201021)
文摘To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.
基金Project supported by the National Basic Research Program of China (Grant No.2010CB923102)the National Natural Science Foundation of China (Grant No.11074199)
文摘A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state A-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 90718007)the National Natural Science Foundation of China (Grant Nos. 60773135 and 60970140)
文摘This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11074087)the Natural Science Foundation of Hubei Province, China (Grant No. 2010CDA075)the Natural Science Foundation of Wuhan City, China (GrantNo. 201150530149)
文摘Effects of photon addition on the quantum nonlocality of squeezed entangled coherent states for Bell-inequality tests are studied theoretically. By utilizing the method of photon-parity measurement, it is found that photon addition can always increase the degrees of Bell violations within a certain parameter range. A possible scheme for generating photon-added squeezed entangled coherent states is proposed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10404007 and 60578055)the State Key Program for Basic Research of China (Grant No 2007CB925204)
文摘This paper reconsiders carefully the possibility of using the Smolin bound entangled states as the carrier for sharing quantum secret. It finds that the process of quantum secret sharing based on Smolin states has insecurity though the Smolin state was reported to violate maximally the two-setting Bell-inequlity. The general proof is given.
基金The project supported by the Scientific Research Fund of Education Department of Hunan Province under Grant No.06C354 and the Natural Science Foundation of Hunan Province under Grant No. 06JJ5015 tCorresponding author,
文摘In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomic internal states and coherent states of cavity field. We also discuss the methods of distinguishing coherent states [±α〉 in a cavity. Finally, a brief discussion about the feasibility of this scheme in experiment is presented.
基金The project supported by National Natural Science Foundation of China under Grant No.10575017
文摘We present a controlled secure quantum communication protocol using non-maximally (pure) entangled W states first, and then discuss the basic requirements for a real quantum communication. We show that the authorized two users can exchange their secret messages with the help of the controller after purifying the non-maximally entangled states quantum channel unconditionally securely and simultaneously. Our quantum communication protocol seems even more feasible within present technologies.
文摘In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent quantum states, implying that quantum states lose their identities when they get entangled. This is contrary to the observation that a composition of entangled quantum states decays back to its constituent quantum states. To eliminate this discrepancy, this paper introduces a new type of numbers, called virtual numbers, which produce zero upon multiplication with complex numbers. In the proposed formalism of quantum states, probability amplitudes of quantum states are general numbers made of complex and virtual numbers. A composition of entangled quantum states, such as a Bell state, can then be decomposed into its constituent quantum states, implying that quantum states retain their identities when they get entangled.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.