期刊文献+
共找到2,202篇文章
< 1 2 111 >
每页显示 20 50 100
Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition
1
作者 Liya Yue Pei Hu +1 位作者 Shu-Chuan Chu Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1957-1975,共19页
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext... Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER. 展开更多
关键词 Speech emotion recognition filter-wrapper high-dimensional feature selection equilibrium optimizer MULTI-OBJECTIVE
下载PDF
A Sequence Image Matching Method Based on Improved High-Dimensional Combined Features 被引量:2
2
作者 Leng Xuefei Gong Zhe +1 位作者 Fu Runzhe Liu Yang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第5期820-828,共9页
Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim... Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes. 展开更多
关键词 SEQUENCE image MATCHING navigation DELAUNAY TRIANGULATION high-dimensional combined feature k-nearest NEIGHBOR
下载PDF
A Length-Adaptive Non-Dominated Sorting Genetic Algorithm for Bi-Objective High-Dimensional Feature Selection
3
作者 Yanlu Gong Junhai Zhou +2 位作者 Quanwang Wu MengChu Zhou Junhao Wen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1834-1844,共11页
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected featu... As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected features.Evolutionary computing(EC)is promising for FS owing to its powerful search capability.However,in traditional EC-based methods,feature subsets are represented via a length-fixed individual encoding.It is ineffective for high-dimensional data,because it results in a huge search space and prohibitive training time.This work proposes a length-adaptive non-dominated sorting genetic algorithm(LA-NSGA)with a length-variable individual encoding and a length-adaptive evolution mechanism for bi-objective highdimensional FS.In LA-NSGA,an initialization method based on correlation and redundancy is devised to initialize individuals of diverse lengths,and a Pareto dominance-based length change operator is introduced to guide individuals to explore in promising search space adaptively.Moreover,a dominance-based local search method is employed for further improvement.The experimental results based on 12 high-dimensional gene datasets show that the Pareto front of feature subsets produced by LA-NSGA is superior to those of existing algorithms. 展开更多
关键词 Bi-objective optimization feature selection(FS) genetic algorithm high-dimensional data length-adaptive
下载PDF
Detecting soil salinity with arid fraction integrated index and salinity index in feature space using Landsat TM imagery 被引量:14
4
作者 Fei WANG Xi CHEN +2 位作者 GePing LUO JianLi DING XianFeng CHEN 《Journal of Arid Land》 SCIE CSCD 2013年第3期340-353,共14页
Modeling soil salinity in an arid salt-affected ecosystem is a difficult task when using remote sensing data because of the complicated soil context (vegetation cover, moisture, surface roughness, and organic matter... Modeling soil salinity in an arid salt-affected ecosystem is a difficult task when using remote sensing data because of the complicated soil context (vegetation cover, moisture, surface roughness, and organic matter) and the weak spectral features of salinized soil. Therefore, an index such as the salinity index (SI) that only uses soil spectra may not detect soil salinity effectively and quantitatively. The use of vegetation reflectance as an indirect indicator can avoid limitations associated with the direct use of soil reflectance. The normalized difference vegetation index (NDVI), as the most common vegetation index, was found to be responsive to salinity but may not be available for retrieving sparse vegetation due to its sensitivity to background soil in arid areas. Therefore, the arid fraction integrated index (AFⅡ) was created as supported by the spectral mixture analysis (SMA), which is more appropriate for analyzing variations in vegetation cover (particularly halophytes) than NDVI in the study area. Using soil and vegetation separately for detecting salinity perhaps is not feasible. Then, we developed a new and operational model, the soil salinity detecting model (SDM) that combines AFⅡ and SI to quantitatively estimate the salt content in the surface soil. SDMs, including SDM1 and SDM2, were constructed through analyzing the spatial characteristics of soils with different salinization degree by integrating AFⅡ and SI using a scatterplot. The SDMs were then compared to the combined spectral response index (COSRI) from field measurements with respect to the soil salt content. The results indicate that the SDM values are highly correlated with soil salinity, in contrast to the performance of COSRI. Strong exponential relationships were observed between soil salinity and SDMs (R2〉0.86, RMSE〈6.86) compared to COSRI (R2=0.71, RMSE=16.21). These results suggest that the feature space related to biophysical properties combined with AFII and SI can effectively provide information on soil salinity. 展开更多
关键词 soil salinity spectrum HALOPHYTES Landsat TM spectral mixture analysis feature space model
下载PDF
Research of Underwater Bottom Object and Reverberation in Feature Space 被引量:7
5
作者 Xiukun Li Zhi Xia 《Journal of Marine Science and Application》 2013年第2期235-239,共5页
The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in featu... The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in feature space and reverberation is only treated as interference. In this paper, reverberation is considered as a kind of signal with steady characteristic, and the clustering of reverberation in frequency discrete wavelet transform (FDWT) feature space is studied. In order to extract the identifying information of echo signals, feature compression and cluster analysis are adopted in this paper, and the criterion of separability between object echoes and reverberation is given. The experimental data processing results show that reverberation has steady pattern in FDWT feature space which differs from that of object echoes. It is proven that there is separability between reverberation and object echoes. 展开更多
关键词 underwater bottom object pattern of reverberation feature clustering feature space underwater object detection
下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
6
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 Multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
下载PDF
Differentially private SGD with random features
7
作者 WANG Yi-guang GUO Zheng-chu 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期1-23,共23页
In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data... In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions. 展开更多
关键词 learning theory differential privacy stochastic gradient descent random features reproducing kernel Hilbert spaces
下载PDF
Stacked spectral feature space patch: An advanced spectral representation for precise crop classification based on convolutional neural network 被引量:2
8
作者 Hui Chen Yue’an Qiu +4 位作者 Dameng Yin Jin Chen Xuehong Chen Shuaijun Liu Licong Liu 《The Crop Journal》 SCIE CSCD 2022年第5期1460-1469,共10页
Spectral and spatial features in remotely sensed data play an irreplaceable role in classifying crop types for precision agriculture. Despite the thriving establishment of the handcrafted features, designing or select... Spectral and spatial features in remotely sensed data play an irreplaceable role in classifying crop types for precision agriculture. Despite the thriving establishment of the handcrafted features, designing or selecting such features valid for specific crop types requires prior knowledge and thus remains an open challenge. Convolutional neural networks(CNNs) can effectively overcome this issue with their advanced ability to generate high-level features automatically but are still inadequate in mining spectral features compared to mining spatial features. This study proposed an enhanced spectral feature called Stacked Spectral Feature Space Patch(SSFSP) for CNN-based crop classification. SSFSP is a stack of twodimensional(2 D) gridded spectral feature images that record various crop types’ spatial and intensity distribution characteristics in a 2 D feature space consisting of two spectral bands. SSFSP can be input into2 D-CNNs to support the simultaneous mining of spectral and spatial features, as the spectral features are successfully converted to 2 D images that can be processed by CNN. We tested the performance of SSFSP by using it as the input to seven CNN models and one multilayer perceptron model for crop type classification compared to using conventional spectral features as input. Using high spatial resolution hyperspectral datasets at three sites, the comparative study demonstrated that SSFSP outperforms conventional spectral features regarding classification accuracy, robustness, and training efficiency. The theoretical analysis summarizes three reasons for its excellent performance. First, SSFSP mines the spectral interrelationship with feature generality, which reduces the required number of training samples.Second, the intra-class variance can be largely reduced by grid partitioning. Third, SSFSP is a highly sparse feature, which reduces the dependence on the CNN model structure and enables early and fast convergence in model training. In conclusion, SSFSP has great potential for practical crop classification in precision agriculture. 展开更多
关键词 Crop classification Convolutional neural network Handcrafted feature Stacked spectral feature space patch Spectral information
下载PDF
Feature Patch Illumination Spaces and Karcher Compression for Face Recognition via Grassmannians 被引量:1
9
作者 Jen-Mei Chang Chris Peterson Michael Kirby 《Advances in Pure Mathematics》 2012年第4期226-242,共17页
Recent work has established that digital images of a human face, when collected with a fixed pose but under a variety of illumination conditions, possess discriminatory information that can be used in classification. ... Recent work has established that digital images of a human face, when collected with a fixed pose but under a variety of illumination conditions, possess discriminatory information that can be used in classification. In this paper we perform classification on Grassmannians to demonstrate that sufficient discriminatory information persists in feature patch (e.g., nose or eye patch) illumination spaces. We further employ the use of Karcher mean on the Grassmannians to demonstrate that this compressed representation can accelerate computations with relatively minor sacrifice on performance. The combination of these two ideas introduces a novel perspective in performing face recognition. 展开更多
关键词 GRASSMANNIANS Karcher Mean Face Recognition ILLUMINATION spaceS Compressions feature PATCHES Principal ANGLES
下载PDF
Discussion on the feature of strong earthquake: Orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake
10
作者 张晓东 张永仙 +1 位作者 吕梅梅 余素荣 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第6期598-605,共8页
In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors... In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors such as the earth rotation, earth tides are analyzed. The results show that: the giant earthquakes with the magnitude more than 8 occurred about every 24 years and the earthquakes with the magnitude more than 7 about every 7 years in Chinese mainland. The Western Kunlun Mountain M=8.1 earthquake exactly occurred at the expected time; The spatial distance show approximately the same distances between each two swarms. The earth rotation, earth tide, sun tide and sun magnetic field have played a role of modulation and triggering in the intensity. At last, the condi-tions for earthquake generation and occurrence are also discussed. 展开更多
关键词 giant earthquake time space and intensity in order feature
下载PDF
Indexing the bit-code and distance for fast KNN search in high-dimensional spaces
11
作者 LIANG Jun-jie FENG Yu-cai 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期857-863,共7页
Various index structures have recently been proposed to facilitate high-dimensional KNN queries, among which the techniques of approximate vector presentation and one-dimensional (1D) transformation can break the curs... Various index structures have recently been proposed to facilitate high-dimensional KNN queries, among which the techniques of approximate vector presentation and one-dimensional (1D) transformation can break the curse of dimensionality. Based on the two techniques above, a novel high-dimensional index is proposed, called Bit-code and Distance based index (BD). BD is based on a special partitioning strategy which is optimized for high-dimensional data. By the definitions of bit code and transformation function, a high-dimensional vector can be first approximately represented and then transformed into a 1D vector, the key managed by a B+-tree. A new KNN search algorithm is also proposed that exploits the bit code and distance to prune the search space more effectively. Results of extensive experiments using both synthetic and real data demonstrated that BD out- performs the existing index structures for KNN search in high-dimensional spaces. 展开更多
关键词 high-dimensional spaces KNN search Bit-code and distance based index (BD) Approximate vector
下载PDF
Global Attractor for High-dimensional Spacially Discrete FitzHugh-Nagumo System in Weighted Space
12
作者 YIN Fu-qi JIANG Hong +1 位作者 JIN Meng-zhao LIU Zhi-qi 《Chinese Quarterly Journal of Mathematics》 2020年第3期255-277,共23页
In this paper,We study the global attractor and its properties on in nite lattice dynamical system FitzHugh-Nagumo in a weighted space lσ^2×lσ^2.We prove the existence and uniqueness of the solution to the latt... In this paper,We study the global attractor and its properties on in nite lattice dynamical system FitzHugh-Nagumo in a weighted space lσ^2×lσ^2.We prove the existence and uniqueness of the solution to the lattice dynamical system FitzHugh-Nagumo in lσ^2×lσ^2.Then we get a bounded absorbing set,which suggests the existence of global attractors.Finally,we study the uniform boundedness and the upper semicontinuity of the global attractor. 展开更多
关键词 Global attractor FitzHugh-Nagumo equation high-dimensional discretiza-tion Weighted space
下载PDF
Reinforcement learning method for machining deformation control based on meta-invariant feature space
13
作者 Yujie Zhao Changqing Liu +2 位作者 Zhiwei Zhao Kai Tang Dong He 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期323-339,共17页
Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components.In the machining process,different batches of blanks have different residual stress distri... Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components.In the machining process,different batches of blanks have different residual stress distributions,which pose a significant challenge to machining deformation control.In this study,a reinforcement learning method for machining deformation control based on a meta-invariant feature space was developed.The proposed method uses a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force.Moreover,combined with a meta-invariant feature space,the proposed method learns the internal relationship of the deformation control approaches under different stress distributions to achieve the machining deformation control of different batches of blanks.Finally,the experimental results show that the proposed method achieves better deformation control than the two existing benchmarking methods. 展开更多
关键词 Machining deformation Residual stress Deformation control Meta-invariant feature space Reinforcement learning
下载PDF
Feature mapping space and sample determination for person re-identification
14
作者 HOU Wei HU Zhentao +1 位作者 LIU Xianxing SHI Changsen 《High Technology Letters》 EI CAS 2022年第3期237-246,共10页
Person re-identification(Re-ID) is integral to intelligent monitoring systems.However,due to the variability in viewing angles and illumination,it is easy to cause visual ambiguities,affecting the accuracy of person r... Person re-identification(Re-ID) is integral to intelligent monitoring systems.However,due to the variability in viewing angles and illumination,it is easy to cause visual ambiguities,affecting the accuracy of person re-identification.An approach for person re-identification based on feature mapping space and sample determination is proposed.At first,a weight fusion model,including mean and maximum value of the horizontal occurrence in local features,is introduced into the mapping space to optimize local features.Then,the Gaussian distribution model with hierarchical mean and covariance of pixel features is introduced to enhance feature expression.Finally,considering the influence of the size of samples on metric learning performance,the appropriate metric learning is selected by sample determination method to further improve the performance of person re-identification.Experimental results on the VIPeR,PRID450 S and CUHK01 datasets demonstrate that the proposed method is better than the traditional methods. 展开更多
关键词 person re-identification(Re-ID) mapping space feature optimization sample determination
下载PDF
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather
15
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image Image feature point extraction and matching space weather Solar image
下载PDF
A Comparative Study on Two Techniques of Reducing the Dimension of Text Feature Space
16
作者 Yin Zhonghang, Wang Yongcheng, Cai Wei & Diao Qian School of Electronic & Information Technology, Shanghai Jiaotong University, Shanghai 200030, P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第1期87-92,共6页
With the development of large scale text processing, the dimension of text feature space has become larger and larger, which has added a lot of difficulties to natural language processing. How to reduce the dimension... With the development of large scale text processing, the dimension of text feature space has become larger and larger, which has added a lot of difficulties to natural language processing. How to reduce the dimension has become a practical problem in the field. Here we present two clustering methods, i.e. concept association and concept abstract, to achieve the goal. The first refers to the keyword clustering based on the co occurrence of 展开更多
关键词 in the same text and the second refers to that in the same category. Then we compare the difference between them. Our experiment results show that they are efficient to reduce the dimension of text feature space. Keywords: Text data mining
下载PDF
Feature Extraction of Kernel Regress Reconstruction for Fault Diagnosis Based on Self-organizing Manifold Learning 被引量:3
17
作者 CHEN Xiaoguang LIANG Lin +1 位作者 XU Guanghua LIU Dan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1041-1049,共9页
The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddi... The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed. 展开更多
关键词 feature extraction manifold learning self-organize mapping kernel regression local tangent space alignment
下载PDF
Densification,microstructural features and tensile properties of selective laser melted AlMgSiScZr alloy from single track to block specimen 被引量:6
18
作者 BI Jiang CHEN Yan-bin +2 位作者 CHEN Xi STAROSTENKOV M D DONG Guo-jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1129-1143,共15页
The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good c... The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good corrosion resistance and high mechanical performance.In this paper,an Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy was fabricated via SLM.The characteristics of single track at different process parameters,and the influence of hatch spacing on densification,microstructural features and tensile properties of block specimens were systematically studied.The hatch spacing has an influence on the overlap ratio of single track,and further affects the internal forming quality of printed specimen.At a laser power of 160 W and scanning speed of 400 mm/s,the densification of block specimen increased first and then decreased with the increase of hatch spacing.The nearly full dense specimen(98.7%)with a tensile strength of 452 MPa was fabricated at a hatch spacing of 80μm.Typical characteristics of dimple and cleavage on the tensile fracture of the AlMgSiScZr alloy showed the mixed fracture of ductility and brittleness. 展开更多
关键词 selective laser melting aluminum alloy hatch spacing microstructural feature tensile properties
下载PDF
Fractional Envelope Analysis for Rolling Element Bearing Weak Fault Feature Extraction 被引量:6
19
作者 Jianhong Wang Liyan Qiao +1 位作者 Yongqiang Ye YangQuan Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期353-360,共8页
The bearing weak fault feature extraction is crucial to mechanical fault diagnosis and machine condition monitoring. Envelope analysis based on Hilbert transform has been widely used in bearing fault feature extractio... The bearing weak fault feature extraction is crucial to mechanical fault diagnosis and machine condition monitoring. Envelope analysis based on Hilbert transform has been widely used in bearing fault feature extraction. A generalization of the Hilbert transform, the fractional Hilbert transform is defined in the frequency domain, it is based upon the modification of spatial filter with a fractional parameter, and it can be used to construct a new kind of fractional analytic signal. By performing spectrum analysis on the fractional envelope signal, the fractional envelope spectrum can be obtained. When weak faults occur in a bearing, some of the characteristic frequencies will clearly appear in the fractional envelope spectrum. These characteristic frequencies can be used for bearing weak fault feature extraction. The effectiveness of the proposed method is verified through simulation signal and experiment data. © 2017 Chinese Association of Automation. 展开更多
关键词 Bearings (machine parts) Condition monitoring EXTRACTION Fault detection feature extraction Frequency domain analysis Hilbert spaces Mathematical transformations Spectrum analysis
下载PDF
Observation points classifier ensemble for high-dimensional imbalanced classification 被引量:1
20
作者 Yulin He Xu Li +3 位作者 Philippe Fournier‐Viger Joshua Zhexue Huang Mianjie Li Salman Salloum 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期500-517,共18页
In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)... In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems. 展开更多
关键词 classifier ensemble feature transformation high-dimensional data classification imbalanced learning observation point mechanism
下载PDF
上一页 1 2 111 下一页 到第
使用帮助 返回顶部