期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:13
1
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera... Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
下载PDF
Cross Entropy Based Sparse Logistic Regression to Identify Phenotype-Related Mutations in Methicillin-Resistant <i>Staphylococcus aureus</i>
2
作者 Bahriddin Abapihi Mohammad Reza Faisal +6 位作者 Ngoc Giang Nguyen Mera Kartika Delimayanti Bedy Purnama Favorisen Rosyking Lumbanraja Dau Phan Mamoru Kubo Kenji Satou 《Journal of Biomedical Science and Engineering》 2020年第7期168-174,共7页
Emergence of drug resistant bacteria is one of the serious problems in today’s public health. However, the relationship between genomic mutation of bacteria and the phenotypic difference of them is still unclear. In ... Emergence of drug resistant bacteria is one of the serious problems in today’s public health. However, the relationship between genomic mutation of bacteria and the phenotypic difference of them is still unclear. In this paper, based on the mutation information in whole genome sequences of 96 MRSA strains, two kinds of phenotypes (pathogenicity and drug resistance) were learnt and predicted by machine learning algorithms. As a result of effective feature selection by cross entropy based sparse logistic regression, these phenotypes could be predicted in sufficiently high accuracy (100% and 97.87%, respectively) with less than 10 features. It means that we could develop a novel rapid test method in the future for checking MRSA phenotypes. 展开更多
关键词 MRSA Phenotype Classification Feature Selection high-dimensional binary data Cross Entropy
下载PDF
A combined p-value test for the mean difference of high-dimensional data
3
作者 Wei Yu Wangli Xu Lixing Zhu 《Science China Mathematics》 SCIE CSCD 2019年第5期961-978,共18页
This paper proposes a novel method for testing the equality of high-dimensional means using a multiple hypothesis test. The proposed method is based on the maximum of standardized partial sums of logarithmic p-values ... This paper proposes a novel method for testing the equality of high-dimensional means using a multiple hypothesis test. The proposed method is based on the maximum of standardized partial sums of logarithmic p-values statistic. Numerical studies show that the method performs well for both normal and non-normal data and has a good power performance under both dense and sparse alternative hypotheses. For illustration, a real data analysis is implemented. 展开更多
关键词 high-dimensional data EQUALITY of means multiple HYPOTHESIS testing sparse alternatives
原文传递
基于SS/OSF实现高维稀疏数据对象的聚类 被引量:5
4
作者 吴萍 宋瀚涛 +2 位作者 牛振东 张利萍 张聚礼 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第3期216-220,共5页
为了解决传统聚类方法处理高维稀疏数据对象时聚类结果不理想的问题,提出了SS/OSF聚类方法.该方法基于对象组相似度(SS)和对象组特征向量(OSF),并借助对象组特征向量的可加性实现.采用本方法得到高维稀疏数据对象的聚类结果后,可以根据... 为了解决传统聚类方法处理高维稀疏数据对象时聚类结果不理想的问题,提出了SS/OSF聚类方法.该方法基于对象组相似度(SS)和对象组特征向量(OSF),并借助对象组特征向量的可加性实现.采用本方法得到高维稀疏数据对象的聚类结果后,可以根据聚类结果中各个对象集合的上确界和下确界为新对象进行对象组分类.实验表明,与传统K-means聚类方法相比,随着数据对象数目的增加,该方法无论是在运行时间上,还是在聚类结果的准确度方面都有明显的改进. 展开更多
关键词 高维稀疏二态数据 对象组相似度 对象组特征向量 聚类 分类
下载PDF
基于对象组特征向量的聚类与分类的实现
5
作者 吴萍 张利萍 《计算机工程》 EI CAS CSCD 北大核心 2006年第16期17-19,57,共4页
高维稀疏数据的聚类分析是目前数据挖掘领域内亟待解决的问题之一。传统的聚类方法中,大部分不适用于高维稀疏数据,不能得到满意的结果。该文借助对象组相似度和对象组的特征向量,提出了一种实现聚类的方法。根据聚类结果后,根据聚类集... 高维稀疏数据的聚类分析是目前数据挖掘领域内亟待解决的问题之一。传统的聚类方法中,大部分不适用于高维稀疏数据,不能得到满意的结果。该文借助对象组相似度和对象组的特征向量,提出了一种实现聚类的方法。根据聚类结果后,根据聚类集合的上确界和下确界给出新对象的分类。该方法思想明了,实现起来简单轻松,结果准确可靠。 展开更多
关键词 高维稀疏二态数据 对象组相似度 对象组特征向量 聚类 分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部