The distributed cooperative decision problems of missiles autonomous formation with network packet loss are investigated by using the potential game based on formation principles.In particular,a dynamic target allocat...The distributed cooperative decision problems of missiles autonomous formation with network packet loss are investigated by using the potential game based on formation principles.In particular,a dynamic target allocation method for missiles formation is provided based on the potential game and formation principles,after the introduction of cooperative guidance and control system of the missiles formation.Then we seek the optimization of a global utility function through autonomous missiles that are capable of making individually rational decisions to optimize their own utility functions.The first important aspect of the problem is to design an individual utility function considering the characteristics of the missiles formation,with which the objective of the missiles are localized to each missile yet aligned with the global utility function.The second is to equip the missiles with an appropriate coordination mechanism with each missile pursuing the optimization of its own utility function.We present the design procedure for the utility,and present a coordination mechanism based on spatial adaptive play and then introduce the idea of“cyclical selected spatial adaptive play”and“negotiation based on time division multiple address(TDMA)protocol formation support network”.Finally,we present simulations for the distributed dynamic target allocation on the comprehensive digital simulation system,and the results illustrate the effectiveness and engineering applicability of the method.展开更多
In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean cur...In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean currents are combined with the model parameter uncertainties as a compound disturbance.Then a disturbance observer(DO)is introduced to estimate the compound disturbance,which can be achieved within a finite time independent of the initial estimation error.Based on a DO,a novel fixed-time sliding control scheme is developed,by which the follower vehicle can track the leader vehicle with all the states globally stabilized within a given settling time.The effectiveness and performance of the method are demonstrated by numerical simulations.展开更多
Most formation approaches of autonomous underwater vehicles(AUVs)focus on the control techniques,ignoring the influence of underwater channel.This paper is concerned with a communication-aware formation issue for AUVs...Most formation approaches of autonomous underwater vehicles(AUVs)focus on the control techniques,ignoring the influence of underwater channel.This paper is concerned with a communication-aware formation issue for AUVs,subject to model uncertainty and fading channel.An integral reinforcement learning(IRL)based estimator is designed to calculate the probabilistic channel parameters,wherein the multivariate probabilistic collocation method with orthogonal fractional factorial design(M-PCM-OFFD)is employed to evaluate the uncertain channel measurements.With the estimated signal-to-noise ratio(SNR),we employ the IRL and M-PCM-OFFD to develop a saturated formation controller for AUVs,dealing with uncertain dynamics and current parameters.For the proposed formation approach,an integrated optimization solution is presented to make a balance between formation stability and communication efficiency.Main innovations lie in three aspects:1)Construct an integrated communication and control optimization framework;2)Design an IRL-based channel prediction estimator;3)Develop an IRL-based formation controller with M-PCM-OFFD.Finally,simulation results show that the formation approach can avoid local optimum estimation,improve the channel efficiency,and relax the dependence of AUV model parameters.展开更多
In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and lea...In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.展开更多
This paper considers the formation control problem of multi-agent systems in a distributed fashion. Two cases of the information propagating topologies among multiple agents, characterized by graphics model, are consi...This paper considers the formation control problem of multi-agent systems in a distributed fashion. Two cases of the information propagating topologies among multiple agents, characterized by graphics model, are considered. One is fixed topology. The other is switching topology which represents the limited and less reliable information exchange. The local formation control strategies established in this paper are based on a simple modification of the existing consensus control strategies. Moreover, some existing convergence conditions are shown to be a special case of our model even in the continuous-time consensus case. Therefore, the results of this paper extend the existing results about the consensus problem.展开更多
A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed env...A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.展开更多
Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperativ...Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.展开更多
Autonomous aerial robotics has become a hot direction ofresearch inside the community of robotics and control. Theprimary problem addressed by formation control is to steermultiple aerial robots to form desired geomet...Autonomous aerial robotics has become a hot direction ofresearch inside the community of robotics and control. Theprimary problem addressed by formation control is to steermultiple aerial robots to form desired geometric patterns and,at the same time, realize desired collective swarming behaviorsin a decentralized or distributed manner. In contrast toground vehicles, aerial robots have the ability to work inthree-dimensional (3D) airspace. Equipped with electric orhydraulic motors, the vertical take-off and landing (VTOL)capability is a typical performance of aerial robots. Formationcontrol technology for such aerial robots is incessantlyspringing up to satisfy the requirements of highly intelligentautonomous systems, which affects both military and civilareas, including missile defense, battlefield surveillance,satellite network construction, fire suppression, power gridinspection, commercial show, etc. [1–5]. Such a problem ofmultiple aerial robots formation control is exceptionallychallenging to analyze if practical constraints such as complexdynamics, motion constraints, and imperfect measurementsare incorporated.展开更多
This paper proposes a robust cooperative control strategy for multiple autonomous vehicles to achieve safe and efficient platoon formation,and it analyzes the effects of vehicle stability boundaries and parameter unce...This paper proposes a robust cooperative control strategy for multiple autonomous vehicles to achieve safe and efficient platoon formation,and it analyzes the effects of vehicle stability boundaries and parameter uncertainties.The cooperative vehicle control framework is composed of the upper planning level and lower tracking control level.In the planning level,the trajectory of each vehicle is generated by using the multi-objective flocking algorithm to form the platoon.The parameters of the flocking algorithm are optimized to prevent the vehicle speed and yaw rate from going beyond their limits.In the lower level,to realize the stable platoon formation,a lumped disturbance observer is designed to gain the stable-state reference,and a distributed robust model predictive controller is proposed to achieve the offset-free trajectory tracking while downsizing the effects of parameter uncertainties.The simulation results show the proposed cooperative control strategy can achieve safe and efficient platoon formation.展开更多
While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous ...While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous navigation in an unknown dynamic environment for a single and a group of three wheeled omnidirectional mobile robots(TWOMRs). The robot has to track a dynamic target while avoiding dynamic obstacles and dynamic walls in an unknown and very dense environment. It adopts a behavior-based controller that consists of four behaviors: "target tracking", "obstacle avoidance", "dynamic wall following" and "avoid robots". The paper considers the problem of kinematic saturation. In addition, it introduces a strategy for predicting the velocity of dynamic obstacles based on two successive measurements of the ultrasonic sensors to calculate the velocity of the obstacle expressed in the sensor frame. Furthermore, the paper proposes a strategy to deal with dynamic walls even when they have U-like or V-like shapes. The approach can also deal with the formation control of a group of robots based on the leader-follower structure and the behavior-based control, where the robots have to get together and maintain a given formation while navigating toward the target, avoiding obstacles and walls in a dynamic environment. The effectiveness of the proposed approaches is demonstrated via simulation.展开更多
基金supported by the Industrial Technology Development Program(B1120131046)
文摘The distributed cooperative decision problems of missiles autonomous formation with network packet loss are investigated by using the potential game based on formation principles.In particular,a dynamic target allocation method for missiles formation is provided based on the potential game and formation principles,after the introduction of cooperative guidance and control system of the missiles formation.Then we seek the optimization of a global utility function through autonomous missiles that are capable of making individually rational decisions to optimize their own utility functions.The first important aspect of the problem is to design an individual utility function considering the characteristics of the missiles formation,with which the objective of the missiles are localized to each missile yet aligned with the global utility function.The second is to equip the missiles with an appropriate coordination mechanism with each missile pursuing the optimization of its own utility function.We present the design procedure for the utility,and present a coordination mechanism based on spatial adaptive play and then introduce the idea of“cyclical selected spatial adaptive play”and“negotiation based on time division multiple address(TDMA)protocol formation support network”.Finally,we present simulations for the distributed dynamic target allocation on the comprehensive digital simulation system,and the results illustrate the effectiveness and engineering applicability of the method.
基金supported in part by the National Natural Science Foundation of China(61573077,U1808205)the National Key Research and Development Program of China(2017YFA0700300)
文摘In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean currents are combined with the model parameter uncertainties as a compound disturbance.Then a disturbance observer(DO)is introduced to estimate the compound disturbance,which can be achieved within a finite time independent of the initial estimation error.Based on a DO,a novel fixed-time sliding control scheme is developed,by which the follower vehicle can track the leader vehicle with all the states globally stabilized within a given settling time.The effectiveness and performance of the method are demonstrated by numerical simulations.
基金supported in part by the National Natural Science Foundation of China(62222314,61973263,61873345,62033011)the Youth Talent Program of Hebei(BJ2020031)+2 种基金the Distinguished Young Foundation of Hebei Province(F2022203001)the Central Guidance Local Foundation of Hebei Province(226Z3201G)the Three-Three-Three Foundation of Hebei Province(C20221019)。
文摘Most formation approaches of autonomous underwater vehicles(AUVs)focus on the control techniques,ignoring the influence of underwater channel.This paper is concerned with a communication-aware formation issue for AUVs,subject to model uncertainty and fading channel.An integral reinforcement learning(IRL)based estimator is designed to calculate the probabilistic channel parameters,wherein the multivariate probabilistic collocation method with orthogonal fractional factorial design(M-PCM-OFFD)is employed to evaluate the uncertain channel measurements.With the estimated signal-to-noise ratio(SNR),we employ the IRL and M-PCM-OFFD to develop a saturated formation controller for AUVs,dealing with uncertain dynamics and current parameters.For the proposed formation approach,an integrated optimization solution is presented to make a balance between formation stability and communication efficiency.Main innovations lie in three aspects:1)Construct an integrated communication and control optimization framework;2)Design an IRL-based channel prediction estimator;3)Develop an IRL-based formation controller with M-PCM-OFFD.Finally,simulation results show that the formation approach can avoid local optimum estimation,improve the channel efficiency,and relax the dependence of AUV model parameters.
基金supported in part by the National Natural Science Foundation of China (62033009)the Creative Activity Plan for Science and Technology Commission of Shanghai (20510712300,21DZ2293500)the Supported by Science Foundation of Donghai Laboratory。
文摘In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.
基金the National Natural Science Foundation of China (No.60674071).
文摘This paper considers the formation control problem of multi-agent systems in a distributed fashion. Two cases of the information propagating topologies among multiple agents, characterized by graphics model, are considered. One is fixed topology. The other is switching topology which represents the limited and less reliable information exchange. The local formation control strategies established in this paper are based on a simple modification of the existing consensus control strategies. Moreover, some existing convergence conditions are shown to be a special case of our model even in the continuous-time consensus case. Therefore, the results of this paper extend the existing results about the consensus problem.
基金National Natural Science Foundation of China(Nos.62173303 and 62273307)Natural Science Foundation of Zhejiang Province(No.LQ24F030023)。
文摘A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.
文摘Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.
基金supported by the National Natural Science Foundation of China(Grant Nos.61673327,51606161,11602209,91441128)the Natural Science Foundation of Fujian Province,China(Grant No.2016J06011)
文摘Autonomous aerial robotics has become a hot direction ofresearch inside the community of robotics and control. Theprimary problem addressed by formation control is to steermultiple aerial robots to form desired geometric patterns and,at the same time, realize desired collective swarming behaviorsin a decentralized or distributed manner. In contrast toground vehicles, aerial robots have the ability to work inthree-dimensional (3D) airspace. Equipped with electric orhydraulic motors, the vertical take-off and landing (VTOL)capability is a typical performance of aerial robots. Formationcontrol technology for such aerial robots is incessantlyspringing up to satisfy the requirements of highly intelligentautonomous systems, which affects both military and civilareas, including missile defense, battlefield surveillance,satellite network construction, fire suppression, power gridinspection, commercial show, etc. [1–5]. Such a problem ofmultiple aerial robots formation control is exceptionallychallenging to analyze if practical constraints such as complexdynamics, motion constraints, and imperfect measurementsare incorporated.
基金privided by National Natural Science Foundation of China(Grant Nos.51805081,51575103 and U1664258).
文摘This paper proposes a robust cooperative control strategy for multiple autonomous vehicles to achieve safe and efficient platoon formation,and it analyzes the effects of vehicle stability boundaries and parameter uncertainties.The cooperative vehicle control framework is composed of the upper planning level and lower tracking control level.In the planning level,the trajectory of each vehicle is generated by using the multi-objective flocking algorithm to form the platoon.The parameters of the flocking algorithm are optimized to prevent the vehicle speed and yaw rate from going beyond their limits.In the lower level,to realize the stable platoon formation,a lumped disturbance observer is designed to gain the stable-state reference,and a distributed robust model predictive controller is proposed to achieve the offset-free trajectory tracking while downsizing the effects of parameter uncertainties.The simulation results show the proposed cooperative control strategy can achieve safe and efficient platoon formation.
文摘While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous navigation in an unknown dynamic environment for a single and a group of three wheeled omnidirectional mobile robots(TWOMRs). The robot has to track a dynamic target while avoiding dynamic obstacles and dynamic walls in an unknown and very dense environment. It adopts a behavior-based controller that consists of four behaviors: "target tracking", "obstacle avoidance", "dynamic wall following" and "avoid robots". The paper considers the problem of kinematic saturation. In addition, it introduces a strategy for predicting the velocity of dynamic obstacles based on two successive measurements of the ultrasonic sensors to calculate the velocity of the obstacle expressed in the sensor frame. Furthermore, the paper proposes a strategy to deal with dynamic walls even when they have U-like or V-like shapes. The approach can also deal with the formation control of a group of robots based on the leader-follower structure and the behavior-based control, where the robots have to get together and maintain a given formation while navigating toward the target, avoiding obstacles and walls in a dynamic environment. The effectiveness of the proposed approaches is demonstrated via simulation.