A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum...A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.展开更多
The heat dissipated pad is made of composite mixing silicon or epoxy resin with thermal conductive inorganic fillers. The heat-dissipation material improves performance as the amount of thermal conductivity filler inc...The heat dissipated pad is made of composite mixing silicon or epoxy resin with thermal conductive inorganic fillers. The heat-dissipation material improves performance as the amount of thermal conductivity filler increases. However, the optimum recipe should be determined by considering the price and pad formability. In this study, high performance thermal pad is made of silicon resin mixed with Al2O3 as a thermally conductive filler. Since Al2O3 is low cost, it can use much filler. Al2O3 has improved slip-ability with organic coating on it to increase the viscosity of the slurry. The same process and the same recipe, could maximize the amount of the filler. As a result, the thermal conductivity is lower by 10%. But the viscosity is reduced by 60%, too. So form-ability is getting priority.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50475052)Provincial Natural Science Foundation of Liaoning (No.20022161)Provincial Scientific Research Plan of Education Office of Uaoning(No.202223206).
文摘A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.
文摘The heat dissipated pad is made of composite mixing silicon or epoxy resin with thermal conductive inorganic fillers. The heat-dissipation material improves performance as the amount of thermal conductivity filler increases. However, the optimum recipe should be determined by considering the price and pad formability. In this study, high performance thermal pad is made of silicon resin mixed with Al2O3 as a thermally conductive filler. Since Al2O3 is low cost, it can use much filler. Al2O3 has improved slip-ability with organic coating on it to increase the viscosity of the slurry. The same process and the same recipe, could maximize the amount of the filler. As a result, the thermal conductivity is lower by 10%. But the viscosity is reduced by 60%, too. So form-ability is getting priority.