One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approache...One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approaches to enhancing the understanding of the flood events.The computational domain of this flood is over 9460 km2 and about 3.784 × 106 cells are involved as a 50 m × 50 m mesh is used,which necessitates a computationally efficient model.Here the Open MP(Open Multiprocessing) technique is adopted to parallelize the code of a coupled 2D hydrodynamic and sediment transport model.It is shown that the computational efficiency is enhanced by over 80% due to the parallelization.The floods over both fixed and mobile beds are well reproduced with specified discharge hydrographs at the dam site.Qualitatively,backwater effects during the flood are resolved at the bifurcation between the Chuja and Katun rivers.Quantitatively,the computed maximum stage and thalweg are physically consistent with the field data of the bars and deposits.The effects of sediment transport and morphological evolution on the flood are considerable.Sensitivity analyses indicate that the impact of the peak discharge is significant,whilst those of the Manningroughness,medium sediment size and shape of the inlet discharge hydrograph are marginal.展开更多
Conch Island is a typical artificial island at the Tanghe Estuary in Bohai Sea,China.To improve natural environment and boost local tourism,beach nourishment will be applied to its north-western shore.The projected be...Conch Island is a typical artificial island at the Tanghe Estuary in Bohai Sea,China.To improve natural environment and boost local tourism,beach nourishment will be applied to its north-western shore.The projected beach is landward and opposite to the Jinmeng Bay Beach.Nowadays,with climate changes,frequent heavy rainfalls in Hebei Province rise flood hazards at the Tanghe Estuary.Under this circumstance,potential influences on the projected beach of a flood are investigated for sustainable managements.A multi-coupled model is established and based on the data from field observations,where wave model,flow model and multifraction sediment transport model are included.In addition,the impacts on the projected beach of different components in extreme events are discussed,including the spring tides,storm winds,storm waves,and sediment inputs.The numerical results indicate the following result.(1)Artificial islands protect the coasts from erosion by obstructing landward waves,but rise the deposition risks along the target shore.(2)Flood brings massive sediment inputs and leads to scours at the estuary,but the currents with high sediment concentration contribute to the accretions along the target shore.(3)The projected beach mitigates flood actions and reduces the maximum mean sediment concentration along the target shore by 20%.(4)The storm winds restrict the flood and decrease the maximum mean sediment concentration by 21%.With the combined actions of storm winds and waves,the maximum value further declines by 38%.(5)A quadratic polynomial relationship between the deposition depths and the maximum sediment inputs with flood is established for estimations on the potential morphological changes after the flood process in extreme events.For the uncertainty of estuarine floods,continuous monitoring on local hydrodynamic variations and sediment characteristics at Tanghe Estuary is necessary.展开更多
Nanxiaohong and Nangang main south channel are chosen as the typical flood and ebb channels. Hydrodynamics analysis based on field hydrological and sediment data is conducted with Gao-Collins model to analyse sediment...Nanxiaohong and Nangang main south channel are chosen as the typical flood and ebb channels. Hydrodynamics analysis based on field hydrological and sediment data is conducted with Gao-Collins model to analyse sediment transport trends. Also, the grain size distribution analysis of the bottom sediment sampled in Sep. 2001 is used as the base of the analysis. The result shows that the sediment in Nanxiaohong is from the rive mouth area. The sediment transports upwards with the flood flow which is stronger than the ebb flow, i.e., in the direction of SE-WN. The sediment in main south channel comes from upward. They transport downwards with the ebb flow, which is stronger than the flood flow, i.e., in the direction of WN-SE. The directions, sources and mechanism of sediment transport are identified according to comprehensive analyses of the observed data on hydrodynamics and sediment.展开更多
This article focuses on the study of sediment transport during flood events in the Oued Nachef watershed that feeds the Mefrouche dam.To understand the sediment dynamics in this watershed,ANRH data on instantaneous wa...This article focuses on the study of sediment transport during flood events in the Oued Nachef watershed that feeds the Mefrouche dam.To understand the sediment dynamics in this watershed,ANRH data on instantaneous water discharges and the respective concentrations of suspended particulate matter were used.This enabled the selection of some of the largest flood events over a 24-year period in order to establish the log-log relationships between sediment load(concentration and flux)and water discharge.However,the discharge-concentration relationships revealed hysteresis phenomena that enabled a flood typology to be established and classified into seven categories,thus showing very different transfer dynamics in relation to flood events.The results showed that Category 6 floods presenting hysteresis in the form of a figure of eight exported almost 44%of the suspended particulate matter load while representing just 29%of the flow discharge.展开更多
This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectr...This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).展开更多
Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mou...Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.展开更多
Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharg...Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharge, instability flow, ripping up the bottom). Up to date, the mechanisms for the abnormal phenomena are not well understood. The aim of this paper is to facilitate a new insight into the abnormal downstream increase in peak discharge of hyperconcentrated floods in the lower Yellow River. Numerical model experiments have been conducted on a typical flood occurred in August 1992 in the Lower Yellow River during which the peak discharge at Huayuankou station was 1690 m3/s larger than the value at Xiaolangdi station at upstream. It is found that a fully coupled model that incorporates the contribution of bed evolution to the mass conservation of the water-sediment mixture, can reasonably well capture the characteristics of peak discharge rise and severe bed scour, while separate numerical experiment using a decoupled model, which ignores the feedback effects of bed evolution, shows no rise in the peak discharge. This leads us to comment, if only briefly, that the entrainment of sediment due to bed erosion is the main reason for causing peak discharge increase along downstream course.展开更多
This paper presents the characteristics of sediment transport by flood in the Lower Yellow River with the reach from Huayuankou to Gaocun, which is regarded as a typical braided pattern. The Artificial Neural Network ...This paper presents the characteristics of sediment transport by flood in the Lower Yellow River with the reach from Huayuankou to Gaocun, which is regarded as a typical braided pattern. The Artificial Neural Network Model on Water Use for Sediment Transport (WUST) by flood was established based on the measured data from 1980 to 1998. Consequently, simulations of controlling process of sediment transport by flood were made in terms of the control theory under different scenarios. According to the situation of sediment transport by flood in the Lower Yellow River, Open-Loop control system and feedback control system were adopted in system design. In the Open-Loop control system, numerical simulations were made to reveal the relationship between average discharge of flood and the WUST with varying sediment concentrations. The results demonstrate that sediment concentration has significant influence on the controlling process of flood flow to WUST. It is practical and efficient to control WUST if sediment concentration is less than 20 kg/m3. In the feedback control system, controlling processes of sediment concentration and flood discharge for sediment transport were simulated respectively under given conditions, and it was found that sediment transport process could be controlled completely by sediment concentration and discharge at the inlet of the reach from Huayuankou to Gaocun. Using the same method, controlling processes of sediment transport by flood in other reaches in the Lower Yellow River were also simulated. For the case of sediment concentration being 20 kg/m3, the optimized controlling discharge ranges from 2390 to 2900 m3/s in the lower reach of Huayuankou. This study is also of significance to flood control and flushing sediment in the Lower Yellow River with proper operation modes of Xiaolangdi Reservoir.展开更多
Driftwood is one of the important physical components in mountainous rivers which causes severe hazards due to the clogging of bridges,culverts,and narrow sections during floods.Therefore,the understanding of driftwoo...Driftwood is one of the important physical components in mountainous rivers which causes severe hazards due to the clogging of bridges,culverts,and narrow sections during floods.Therefore,the understanding of driftwood dynamics and mitigation measures are crucial for managing wood in rivers.Open check dams are the most commonly used engineering measure for preventing driftwood from reaching downstream areas.Nevertheless,these open check dams frequently lose their sediment transport function when they are blocked by sediment and driftwood,especially during major flood events.This paper proposes a new type of open check dam for preventing from clogging.Thus,flume experiments were conducted to examine the influence of different types of open check dams on the characteristics of driftwood deposition.For the model with wood length(LWD)=16.5 cm,wood diameter(D)=15 mm,and wood number(N)=172,the highest trapping efficiency was observed with 90.1%and 87.2%retention rates for the classical debris flow breaker and curved footed open check dams,respectively.Laboratory tests showed that through this proposed design,woody debris blockage in a very short time was prevented from the accumulation of woods beside the dam.In addition to this,most of the sediment passed through the check dam and most of the driftwood got trapped.It can be briefly stated that the geometrical design of the structure plays an important role and can be chosen carefully to optimize trapping efficiency.By designing this type of open check dams in mountain river basins,it may provide a better understanding of the driftwood accumulation and basis for the optimal design of these structures.Further development of the solution proposed in this work can pave the way for designing different types of open check dams for effective flood management.展开更多
基金funded by Natural Science Foundation of China (Grants No. 11172217 and 11432015)National Key Basic Research and Development Program (i.e., 973 Program) of China (Grant No. 2007CB714106)
文摘One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approaches to enhancing the understanding of the flood events.The computational domain of this flood is over 9460 km2 and about 3.784 × 106 cells are involved as a 50 m × 50 m mesh is used,which necessitates a computationally efficient model.Here the Open MP(Open Multiprocessing) technique is adopted to parallelize the code of a coupled 2D hydrodynamic and sediment transport model.It is shown that the computational efficiency is enhanced by over 80% due to the parallelization.The floods over both fixed and mobile beds are well reproduced with specified discharge hydrographs at the dam site.Qualitatively,backwater effects during the flood are resolved at the bifurcation between the Chuja and Katun rivers.Quantitatively,the computed maximum stage and thalweg are physically consistent with the field data of the bars and deposits.The effects of sediment transport and morphological evolution on the flood are considerable.Sensitivity analyses indicate that the impact of the peak discharge is significant,whilst those of the Manningroughness,medium sediment size and shape of the inlet discharge hydrograph are marginal.
基金The National Key Research and Development Program of China under contract No.2022YFC3106205the National Natural Science Foundation of China under contract Nos 41976159 and 41776098.
文摘Conch Island is a typical artificial island at the Tanghe Estuary in Bohai Sea,China.To improve natural environment and boost local tourism,beach nourishment will be applied to its north-western shore.The projected beach is landward and opposite to the Jinmeng Bay Beach.Nowadays,with climate changes,frequent heavy rainfalls in Hebei Province rise flood hazards at the Tanghe Estuary.Under this circumstance,potential influences on the projected beach of a flood are investigated for sustainable managements.A multi-coupled model is established and based on the data from field observations,where wave model,flow model and multifraction sediment transport model are included.In addition,the impacts on the projected beach of different components in extreme events are discussed,including the spring tides,storm winds,storm waves,and sediment inputs.The numerical results indicate the following result.(1)Artificial islands protect the coasts from erosion by obstructing landward waves,but rise the deposition risks along the target shore.(2)Flood brings massive sediment inputs and leads to scours at the estuary,but the currents with high sediment concentration contribute to the accretions along the target shore.(3)The projected beach mitigates flood actions and reduces the maximum mean sediment concentration along the target shore by 20%.(4)The storm winds restrict the flood and decrease the maximum mean sediment concentration by 21%.With the combined actions of storm winds and waves,the maximum value further declines by 38%.(5)A quadratic polynomial relationship between the deposition depths and the maximum sediment inputs with flood is established for estimations on the potential morphological changes after the flood process in extreme events.For the uncertainty of estuarine floods,continuous monitoring on local hydrodynamic variations and sediment characteristics at Tanghe Estuary is necessary.
文摘Nanxiaohong and Nangang main south channel are chosen as the typical flood and ebb channels. Hydrodynamics analysis based on field hydrological and sediment data is conducted with Gao-Collins model to analyse sediment transport trends. Also, the grain size distribution analysis of the bottom sediment sampled in Sep. 2001 is used as the base of the analysis. The result shows that the sediment in Nanxiaohong is from the rive mouth area. The sediment transports upwards with the flood flow which is stronger than the ebb flow, i.e., in the direction of SE-WN. The sediment in main south channel comes from upward. They transport downwards with the ebb flow, which is stronger than the flood flow, i.e., in the direction of WN-SE. The directions, sources and mechanism of sediment transport are identified according to comprehensive analyses of the observed data on hydrodynamics and sediment.
文摘This article focuses on the study of sediment transport during flood events in the Oued Nachef watershed that feeds the Mefrouche dam.To understand the sediment dynamics in this watershed,ANRH data on instantaneous water discharges and the respective concentrations of suspended particulate matter were used.This enabled the selection of some of the largest flood events over a 24-year period in order to establish the log-log relationships between sediment load(concentration and flux)and water discharge.However,the discharge-concentration relationships revealed hysteresis phenomena that enabled a flood typology to be established and classified into seven categories,thus showing very different transfer dynamics in relation to flood events.The results showed that Category 6 floods presenting hysteresis in the form of a figure of eight exported almost 44%of the suspended particulate matter load while representing just 29%of the flow discharge.
文摘This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).
基金supported by the Changjiang River Scientific Research Institute(CRSRI)Open Research Program(Grant No.CKWV2017499/KY)the National Natural Science Foundation of China(Grant No.51779280)
文摘Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.
文摘Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharge, instability flow, ripping up the bottom). Up to date, the mechanisms for the abnormal phenomena are not well understood. The aim of this paper is to facilitate a new insight into the abnormal downstream increase in peak discharge of hyperconcentrated floods in the lower Yellow River. Numerical model experiments have been conducted on a typical flood occurred in August 1992 in the Lower Yellow River during which the peak discharge at Huayuankou station was 1690 m3/s larger than the value at Xiaolangdi station at upstream. It is found that a fully coupled model that incorporates the contribution of bed evolution to the mass conservation of the water-sediment mixture, can reasonably well capture the characteristics of peak discharge rise and severe bed scour, while separate numerical experiment using a decoupled model, which ignores the feedback effects of bed evolution, shows no rise in the peak discharge. This leads us to comment, if only briefly, that the entrainment of sediment due to bed erosion is the main reason for causing peak discharge increase along downstream course.
文摘This paper presents the characteristics of sediment transport by flood in the Lower Yellow River with the reach from Huayuankou to Gaocun, which is regarded as a typical braided pattern. The Artificial Neural Network Model on Water Use for Sediment Transport (WUST) by flood was established based on the measured data from 1980 to 1998. Consequently, simulations of controlling process of sediment transport by flood were made in terms of the control theory under different scenarios. According to the situation of sediment transport by flood in the Lower Yellow River, Open-Loop control system and feedback control system were adopted in system design. In the Open-Loop control system, numerical simulations were made to reveal the relationship between average discharge of flood and the WUST with varying sediment concentrations. The results demonstrate that sediment concentration has significant influence on the controlling process of flood flow to WUST. It is practical and efficient to control WUST if sediment concentration is less than 20 kg/m3. In the feedback control system, controlling processes of sediment concentration and flood discharge for sediment transport were simulated respectively under given conditions, and it was found that sediment transport process could be controlled completely by sediment concentration and discharge at the inlet of the reach from Huayuankou to Gaocun. Using the same method, controlling processes of sediment transport by flood in other reaches in the Lower Yellow River were also simulated. For the case of sediment concentration being 20 kg/m3, the optimized controlling discharge ranges from 2390 to 2900 m3/s in the lower reach of Huayuankou. This study is also of significance to flood control and flushing sediment in the Lower Yellow River with proper operation modes of Xiaolangdi Reservoir.
文摘Driftwood is one of the important physical components in mountainous rivers which causes severe hazards due to the clogging of bridges,culverts,and narrow sections during floods.Therefore,the understanding of driftwood dynamics and mitigation measures are crucial for managing wood in rivers.Open check dams are the most commonly used engineering measure for preventing driftwood from reaching downstream areas.Nevertheless,these open check dams frequently lose their sediment transport function when they are blocked by sediment and driftwood,especially during major flood events.This paper proposes a new type of open check dam for preventing from clogging.Thus,flume experiments were conducted to examine the influence of different types of open check dams on the characteristics of driftwood deposition.For the model with wood length(LWD)=16.5 cm,wood diameter(D)=15 mm,and wood number(N)=172,the highest trapping efficiency was observed with 90.1%and 87.2%retention rates for the classical debris flow breaker and curved footed open check dams,respectively.Laboratory tests showed that through this proposed design,woody debris blockage in a very short time was prevented from the accumulation of woods beside the dam.In addition to this,most of the sediment passed through the check dam and most of the driftwood got trapped.It can be briefly stated that the geometrical design of the structure plays an important role and can be chosen carefully to optimize trapping efficiency.By designing this type of open check dams in mountain river basins,it may provide a better understanding of the driftwood accumulation and basis for the optimal design of these structures.Further development of the solution proposed in this work can pave the way for designing different types of open check dams for effective flood management.