Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics ar...Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces.However,current metasurface devices mostly adopt discrete micro/nano structures,which rarely realize both merits simultaneously.In this paper,dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation.Via quasi-continuous nanostrips metasurface,a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated.The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000nm and keep a high power efficiency.The average efficiency of the fabricated metalens reaches 54.24%,showing a significant improvement compared to the previously reported metalenses with the same thickness.The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.展开更多
Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are compre...Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are comprehensively analyzed.The Raman spectra reveal that the ATT-pPoly film is composed of grain boundary and crystalline regions.The preferred orientation is the(111)direction.The grain size increases from 16−23 nm to 21−47 nm,by~70%on average.Comparing with other reported films,Hall measurements reveal that the ATT-pPoly film has a higher carrier concentration(>10^(20)cm^(−3))and higher carrier mobility(>30 cm2/(V·s)).The superior properties of the ATT-pPoly film are attributed to the heavy doping and improved grain size.Heavy doping property is proved by the mean sheet resistance(Rsheet,m)and distribution profile.The R_(sheet,m)decreases by more than 30%,and it can be further decreased by 90%if the annealing temperature or duration is increased.The boron concentration of ATT-pPoly film annealed at 950℃ for 45 min is~3×10^(20)cm^(−3),and the distribution is nearly the same,except near the surface.Besides,the standard deviation coefficient(σ)of Rsheet,m is less than 5.0%,which verifies the excellent uniformity of ATT-pPoly film.展开更多
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo...To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.展开更多
The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)...The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level.展开更多
[Objectives]To select zucchini varieties suitable for cultivation in Zibo City and test its high-yield cultivation techniques.[Methods]Six zucchini varieties were introduced,and their commercial quality and yield were...[Objectives]To select zucchini varieties suitable for cultivation in Zibo City and test its high-yield cultivation techniques.[Methods]Six zucchini varieties were introduced,and their commercial quality and yield were determined.[Results]The yield of Shengfeier,Xiuyu 170 and Xihulu 309 increased by 11.4%,6.9%and 4.6%,respectively compared with S68(control),and zucchini was straight,looked pleasing to the eye,and had strong disease resistance.[Conclusions]The zucchini varieties were selected and the high-quality,high-yield and high-efficiency cultivation techniques were integrated.展开更多
Polysilicon ohmic contacts to n-type 4H-SiC have been fabricated. TLM (transfer length method) test patterns with polysilicon structure are formed on n-wells created by phosphorus ion (P^+) implantation into a Si...Polysilicon ohmic contacts to n-type 4H-SiC have been fabricated. TLM (transfer length method) test patterns with polysilicon structure are formed on n-wells created by phosphorus ion (P^+) implantation into a Si-faced p-type 4H-SiC epilayer. The polysilicon is deposited using low-pressure chemical vapor deposition (LPCVD) and doped by phosphorous ions implantation followed by diffusion to obtain a sheet resistance of 22Ω/□. The specific contact resistance pc of n^+ polysilicon contact to n-type 4H-SiC as low as 3.82 × 10^-5Ω· cm^2 is achieved. The result for sheet resistance Rsh of the phosphorous ion implanted layers in SiC is about 4.9kΩ/□. The mechanisms for n^+ polysilicon ohmic contact to n-type SiC are discussed.展开更多
The resistivity instability of the boron-doped polysilicon resistors being a line resistance element of ICs is within the range of several kΩ's,especially when our running the underneath metal interconnects.Polys...The resistivity instability of the boron-doped polysilicon resistors being a line resistance element of ICs is within the range of several kΩ's,especially when our running the underneath metal interconnects.Polysilicon resistors have been fabricated under various processing conditions as well as some electrical and crystallographic characteristics have been obtained.It is shown the resistivity instability mainly results from the variational carrier mobility.By analyzing the Seto's model,the barrier height and trapped charge density are observed reducing under the Al over layer.Therefore,the resistance instability is also caused by both the charge trapping/detrapping occurring at polysilicon grain boundaries and the resultant variation in the potential barrier height.The formation of high-stability polysilicon resistors in the range of several kΩ's has been decided by compensating the ion implantation,which makes the charge trapping/detrapping at the grain boundary less susceptible to the hydrogen annealing.展开更多
This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstr...This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstrategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equationsolving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency ofCPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload betweenCPU and GPU. To illustrate the advantages of the proposedmethod, three benchmark examples are tested to verifythe hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster thanserial CPU and parallel GPU, while the speedups can be up to two orders of magnitude.展开更多
The emission microscopy (EMMI) test is proposed as an effective method to control the polysilicon over-etching time of advanced CMOS processing combined with a novel test structure, named a poly-edge structure. From...The emission microscopy (EMMI) test is proposed as an effective method to control the polysilicon over-etching time of advanced CMOS processing combined with a novel test structure, named a poly-edge structure. From the values of the breakdown voltage (Vbd) of MOS capacitors (poly-edge structure) ,it was observed that,with for the initial polysilicon etching-time, almost all capacitors in one wafer failed under the initial failure model. With the increase of polysilicon over-etching time, the number of the initial failure capacitors decreased. Finally, no initial failure capacitors were observed after the polysilicon over-etching time was increased by 30s. The breakdown samples with the initial failure model and intrinsic failure model underwent EMMI tests. The EMMI test results show that the initial failure of capacitors with poly-edge structures was due to the bridging effect between the silicon substrate and the polysilicon gate caused by the residual polysilicon in the ditch between the shallow-trench isolation region and the active area, which will short the polysilicon gate with silicon substrate after the silicide process.展开更多
The high-efficiency planting mode for five crops a year of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was introduced, and its yield and economic benefits were compared with the planti...The high-efficiency planting mode for five crops a year of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was introduced, and its yield and economic benefits were compared with the planting mode of three crops a year of "faba bean-spring maize/red bean". The results showed that the planting method for fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was much easier to operate with the input-output ratio of about185.6%, and its yield and economic benefits were 2.09 and 1.83 times of that of the planting mode for three crops a year, significantly improving the agricultural yield and income of farmers. In addition, the cropping index of the planting mode for fresh edible fresh edible "faba bean/spring maize +soybean-autumn maize/autumn soybean" reached up to 350%, and planting faba bean once a year and soybean twice a year could make the biological fixation amount of nitrogen increase 350-450kg/m^2, which equaled to up to 700 kg/m^2 of urea, showing significant ecological and social benefits. Based on the comparison results, the high-yield culture techniques of the planting mode of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" were summarized.展开更多
The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods in...The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition(CVD)reduction furnace were established,and the effects of factors such as the diameter of silicon rods,the surface temperature of silicon rods,the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation.The results show that the convective and radiant heat losses in the furnace increased with the diameter of the silicon rods.Furthermore,the radiant heat loss of the inner and outer rings of silicon rods was inconsistent for the industrial-grade reduction furnace.As the surface temperature of the silicon rods increases,the convective heat loss in the furnace increases,while the radiative heat loss remains relatively constant.When the inlet temperature and inlet velocity increase,the convective heat loss decreases,while the radiant heat loss remains relatively constant.Furthermore,the furnace wall surface emissivity increases,resulting in a significant increase in the amount of radiant heat loss in the furnace.In practice,this can be mitigated by polishing or adding coatings to reduce the furnace wall surface emissivity.展开更多
基金the financial support by National Natural Science Foundation of China under contract No.61905031,61905073National Key R&D Program of China under contract No.2020YFC1522900Natural Science Foundation of Chongqing under contract No.CSTB2023NSCQMSX0992。
文摘Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces.However,current metasurface devices mostly adopt discrete micro/nano structures,which rarely realize both merits simultaneously.In this paper,dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation.Via quasi-continuous nanostrips metasurface,a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated.The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000nm and keep a high power efficiency.The average efficiency of the fabricated metalens reaches 54.24%,showing a significant improvement compared to the previously reported metalenses with the same thickness.The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.
基金support given by the Natural Science Foundation of Nantong(Grant NO.JC2023065)the Research Program of Nantong Institute of Technology(Grant NO.2023XK(B)07).
文摘Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are comprehensively analyzed.The Raman spectra reveal that the ATT-pPoly film is composed of grain boundary and crystalline regions.The preferred orientation is the(111)direction.The grain size increases from 16−23 nm to 21−47 nm,by~70%on average.Comparing with other reported films,Hall measurements reveal that the ATT-pPoly film has a higher carrier concentration(>10^(20)cm^(−3))and higher carrier mobility(>30 cm2/(V·s)).The superior properties of the ATT-pPoly film are attributed to the heavy doping and improved grain size.Heavy doping property is proved by the mean sheet resistance(Rsheet,m)and distribution profile.The R_(sheet,m)decreases by more than 30%,and it can be further decreased by 90%if the annealing temperature or duration is increased.The boron concentration of ATT-pPoly film annealed at 950℃ for 45 min is~3×10^(20)cm^(−3),and the distribution is nearly the same,except near the surface.Besides,the standard deviation coefficient(σ)of Rsheet,m is less than 5.0%,which verifies the excellent uniformity of ATT-pPoly film.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)the Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023,and GJJ181022)。
文摘To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.
基金supported by the National Natural Science Foundation of China(61904166,22209145)the Natural Science Foundation of Sichuan Province(2022NSFSC0258)the Fundamental Research Funds for the Central Universities(YJ2021129)。
文摘The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level.
文摘[Objectives]To select zucchini varieties suitable for cultivation in Zibo City and test its high-yield cultivation techniques.[Methods]Six zucchini varieties were introduced,and their commercial quality and yield were determined.[Results]The yield of Shengfeier,Xiuyu 170 and Xihulu 309 increased by 11.4%,6.9%and 4.6%,respectively compared with S68(control),and zucchini was straight,looked pleasing to the eye,and had strong disease resistance.[Conclusions]The zucchini varieties were selected and the high-quality,high-yield and high-efficiency cultivation techniques were integrated.
文摘Polysilicon ohmic contacts to n-type 4H-SiC have been fabricated. TLM (transfer length method) test patterns with polysilicon structure are formed on n-wells created by phosphorus ion (P^+) implantation into a Si-faced p-type 4H-SiC epilayer. The polysilicon is deposited using low-pressure chemical vapor deposition (LPCVD) and doped by phosphorous ions implantation followed by diffusion to obtain a sheet resistance of 22Ω/□. The specific contact resistance pc of n^+ polysilicon contact to n-type 4H-SiC as low as 3.82 × 10^-5Ω· cm^2 is achieved. The result for sheet resistance Rsh of the phosphorous ion implanted layers in SiC is about 4.9kΩ/□. The mechanisms for n^+ polysilicon ohmic contact to n-type SiC are discussed.
文摘The resistivity instability of the boron-doped polysilicon resistors being a line resistance element of ICs is within the range of several kΩ's,especially when our running the underneath metal interconnects.Polysilicon resistors have been fabricated under various processing conditions as well as some electrical and crystallographic characteristics have been obtained.It is shown the resistivity instability mainly results from the variational carrier mobility.By analyzing the Seto's model,the barrier height and trapped charge density are observed reducing under the Al over layer.Therefore,the resistance instability is also caused by both the charge trapping/detrapping occurring at polysilicon grain boundaries and the resultant variation in the potential barrier height.The formation of high-stability polysilicon resistors in the range of several kΩ's has been decided by compensating the ion implantation,which makes the charge trapping/detrapping at the grain boundary less susceptible to the hydrogen annealing.
基金the National Key R&D Program of China(2020YFB1708300)the National Natural Science Foundation of China(52005192)the Project of Ministry of Industry and Information Technology(TC210804R-3).
文摘This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstrategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equationsolving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency ofCPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload betweenCPU and GPU. To illustrate the advantages of the proposedmethod, three benchmark examples are tested to verifythe hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster thanserial CPU and parallel GPU, while the speedups can be up to two orders of magnitude.
文摘The emission microscopy (EMMI) test is proposed as an effective method to control the polysilicon over-etching time of advanced CMOS processing combined with a novel test structure, named a poly-edge structure. From the values of the breakdown voltage (Vbd) of MOS capacitors (poly-edge structure) ,it was observed that,with for the initial polysilicon etching-time, almost all capacitors in one wafer failed under the initial failure model. With the increase of polysilicon over-etching time, the number of the initial failure capacitors decreased. Finally, no initial failure capacitors were observed after the polysilicon over-etching time was increased by 30s. The breakdown samples with the initial failure model and intrinsic failure model underwent EMMI tests. The EMMI test results show that the initial failure of capacitors with poly-edge structures was due to the bridging effect between the silicon substrate and the polysilicon gate caused by the residual polysilicon in the ditch between the shallow-trench isolation region and the active area, which will short the polysilicon gate with silicon substrate after the silicide process.
基金Supported by the China Agriculture Research System(CARS-09)the Technological Innovation and Industrialization Project for the Rural Area of Nantong City,Jiangsu Province(H12014012)~~
文摘The high-efficiency planting mode for five crops a year of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was introduced, and its yield and economic benefits were compared with the planting mode of three crops a year of "faba bean-spring maize/red bean". The results showed that the planting method for fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was much easier to operate with the input-output ratio of about185.6%, and its yield and economic benefits were 2.09 and 1.83 times of that of the planting mode for three crops a year, significantly improving the agricultural yield and income of farmers. In addition, the cropping index of the planting mode for fresh edible fresh edible "faba bean/spring maize +soybean-autumn maize/autumn soybean" reached up to 350%, and planting faba bean once a year and soybean twice a year could make the biological fixation amount of nitrogen increase 350-450kg/m^2, which equaled to up to 700 kg/m^2 of urea, showing significant ecological and social benefits. Based on the comparison results, the high-yield culture techniques of the planting mode of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" were summarized.
基金funded by the Natural Science Foundation Projects in Sichuan Province(No.2022NSFSC0254).
文摘The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition(CVD)reduction furnace were established,and the effects of factors such as the diameter of silicon rods,the surface temperature of silicon rods,the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation.The results show that the convective and radiant heat losses in the furnace increased with the diameter of the silicon rods.Furthermore,the radiant heat loss of the inner and outer rings of silicon rods was inconsistent for the industrial-grade reduction furnace.As the surface temperature of the silicon rods increases,the convective heat loss in the furnace increases,while the radiative heat loss remains relatively constant.When the inlet temperature and inlet velocity increase,the convective heat loss decreases,while the radiant heat loss remains relatively constant.Furthermore,the furnace wall surface emissivity increases,resulting in a significant increase in the amount of radiant heat loss in the furnace.In practice,this can be mitigated by polishing or adding coatings to reduce the furnace wall surface emissivity.