Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the s...Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved.展开更多
A1GaN/GaN depletion-mode high-electron-mobility transistor (D-HEMT) and fluorine (F) plasma treated enhancement-mode high-electron-mobility transistor (E-HEMT) are exposed to 60Co gamma radiation with a dose of ...A1GaN/GaN depletion-mode high-electron-mobility transistor (D-HEMT) and fluorine (F) plasma treated enhancement-mode high-electron-mobility transistor (E-HEMT) are exposed to 60Co gamma radiation with a dose of 1.6 Mrad (Si). No degradation is observed in the performance of D-HEMT. However, the maximum transeonductance of E-HEMT is increased after radiation. The 2DEG density and the mobility are calculated from the results of capacitance-voltage measurement. The electron mobility decreases after fluorine plasma treatment and recovers after radiation. Conductance measurements in a frequency range from 10 kHz to 1 MHz are used to characterize the trapping effects in the devices. A new type of trap is observed in the F plasma treated E-HEMT compared with the D-HEMT, but the density of the trap decreases by radiation. Fitting of Gp/w data yields the trap densities DT = (1-3)Х1012 cm^-2.eV^-1 and DT = (0,2-0.8)Х10^12 cm^2-eV^-1 before and after radiation, respectively. The time constant is 0.5 ms-6 ms. With F plasma treatment, the trap is introduced by etch damage and degrades the electronic mobility. After 60Co gamma radiation, the etch damage decreases and the electron mobility is improved. The gamma radiation can recover the etch damage caused by F plasma treatment.展开更多
The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60...The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60Co γ-rays at a dose of 3 Mrad (Si), the E-mode HEMT reduces its saturation drain current and maximal transconductance by 6% and 5%, respectively, and significantly increases both forward and reverse gate currents, while its threshold voltage is affected only slightly. The obvious performance degradation of E-mode A1GaN/GaN HEMTs is consistent with the creation of electronegative surface state charges in the source-gate spacer and gate-drain spacer after being irradiated.展开更多
V-gate GaN high-electron-mobility transistors (HEMTs) are fabricated and investigated systematically. A V-shaped recess geometry is obtained using an improved Si3N4 recess etching technology. Compared with standard ...V-gate GaN high-electron-mobility transistors (HEMTs) are fabricated and investigated systematically. A V-shaped recess geometry is obtained using an improved Si3N4 recess etching technology. Compared with standard HEMTs, the fabricated V-gate HEMTs exhibit a 17% higher peak extrinsic transconductance due to a narrowed gate foot. Moreover, both the gate leakage and current dispersion are dramatically suppressed simultaneously, although a slight degradation of frequency response is observed. Based on a two-dimensional electric field simulation using Silvaco "ATLAS" for both standard HEMTs and V-gate HEMTs, the relaxation in peak electric field at the gate edge is identified as the predominant factor leading to the superior performance of V-gate HEMTs.展开更多
AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC charac...AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current-gain cutoff frequency (fT) of 10 GHz and a power gain cutoff frequency (fmax) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C-V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C-V dual sweep.展开更多
A novel normally-off AlGaN/GaN high-electron-mobility transistor(HEMT)with a p-GaN Schottky hybrid gate(PSHG)is proposed,and compared with the conventional p-GaN normally-off AlGaN/GaN HEMTs.This structure can be real...A novel normally-off AlGaN/GaN high-electron-mobility transistor(HEMT)with a p-GaN Schottky hybrid gate(PSHG)is proposed,and compared with the conventional p-GaN normally-off AlGaN/GaN HEMTs.This structure can be realized by selective etching of p-GaN layer,which enables the Schottky junction and PN junction to control the channel charge at the same time.The direct current(DC)and switching characteristics of the PSHG HEMTs are simulated by Slivaco TCAD,and the p-GaN HEMTs and conventional normally-on HEMTs are also simulated for comparison.The simulation results show that the PSHG HEMTs have a higher current density and a lower on-resistance than p-GaN HEMTs,which is more obvious with the decrease of p-GaN ratios of the PSHG HEMTs.The breakdown voltage and threshold voltage of the PSHG HEMTs are very close to those of the p-GaN HEMTs.In addition,the PSHG HEMTs have a higher switching speed than the conventional normally-on HEMTs,and the p-GaN layer ratio has no obvious effect on the switching speed.展开更多
Superior characteristics of Al Ga N-channel metal-insulator-semiconductor(MIS) high electron mobility transistors(HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum ...Superior characteristics of Al Ga N-channel metal-insulator-semiconductor(MIS) high electron mobility transistors(HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum saturation drain current for the Al GaN-channel MIS HEMT can be reduced by 50% compared with the Ga N-channel HEMT. Moreover, benefiting from the better suppression of gate current and reduced leakage current in the buffer layer, the Al Ga N-channel MIS HEMT demonstrates an average breakdown electric field of 1.83 MV/cm at25℃ and 1.06 MV/cm at 300℃, which is almost 2 times and 3 times respectively larger than that of the reference Ga N-channel HEMT. Pulsed mode analyses suggest that the proposed device suffers from smaller current collapse when the temperature reaches as high as 300℃.展开更多
The effects of gate length L_G on breakdown voltage VBRare investigated in AlGaN/GaN high-electron-mobility transistors(HEMTs) with L_G= 1 μm^20 μm. With the increase of L_G, VBRis first increased, and then satura...The effects of gate length L_G on breakdown voltage VBRare investigated in AlGaN/GaN high-electron-mobility transistors(HEMTs) with L_G= 1 μm^20 μm. With the increase of L_G, VBRis first increased, and then saturated at LG= 3 μm. For the HEMT with L_G= 1 μm, breakdown voltage VBRis 117 V, and it can be enhanced to 148 V for the HEMT with L-_G= 3 μm. The gate length of 3 μm can alleviate the buffer-leakage-induced impact ionization compared with the gate length of 1 μm, and the suppression of the impact ionization is the reason for improving the breakdown voltage.A similar suppression of the impact ionization exists in the HEMTs with LG〉 3 μm. As a result, there is no obvious difference in breakdown voltage among the HEMTs with LG= 3 μm^20 μm, and their breakdown voltages are in a range of 140 V–156 V.展开更多
The capacitance-voltage characteristics of AIGaN/GaN high-electron-mobility transistors (HEMTS) are measured in the temperature range of 223-398K. The dependence of capacitance on frequency at various temperatures i...The capacitance-voltage characteristics of AIGaN/GaN high-electron-mobility transistors (HEMTS) are measured in the temperature range of 223-398K. The dependence of capacitance on frequency at various temperatures is analyzed. At lower temperatures, the capacitance decreases only very slightly with frequency. At higher frequencies the curves for all temperatures tend to one capacitance value. Such behavior can be attributed to the interface states or the dislocations.展开更多
Frequency-dependent conductance measurements were carried out to investigate the trap states induced by reactive ion etching in A1GaN/GaN high-electron-mobility transistors (HEMTs) quantitatively. For the non-recess...Frequency-dependent conductance measurements were carried out to investigate the trap states induced by reactive ion etching in A1GaN/GaN high-electron-mobility transistors (HEMTs) quantitatively. For the non-recessed HEMT, the trap state density decreases from 2.48 × 1013 cm-2.eV-1 at an energy of 0.29 eV to 2.79 × 1012 cm-2.eV-1 at ET = 0.33 eV. In contrast, the trap state density of 2.38 × 1013-1.10× 1014 cm-2.eV-1 is located at ET in a range of 0.30-0.33 eV for the recessed HEMT. Thus, lots of trap states with shallow energy levels are induced by the gate recess etching. The induced shallow trap states can be changed into deep trap states by 350 ℃ annealing process. As a result, there are two different types of trap sates, fast and slow, in the annealed HEMT. The parameters of the annealed HEMT are ET = 0.29-0.31 eV and DT = 8.16× 1012-5.58 × 1013 cm-2.eV-1 for the fast trap states, and ET = 0.37-0.45 eV and DT = 1.84×1013- 8.50 × 1013 cm-2.eV-1 for the slow trap states. The gate leakage currents are changed by the etching and following annealing process, and this change can be explained by the analysis of the trap states.展开更多
In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT(here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap ...In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT(here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap states are found at both the Al2O3/In AlN and InAlN/GaN interface. Trap states in InAlN/GaN heterostructure are determined to have mixed de-trapping mechanisms, emission, and tunneling. Part of the electrons captured in the trap states are likely to tunnel into the two-dimensional electron gas(2DEG) channel under serious band bending and stronger electric field peak caused by high Al content in the In AlN barrier, which explains the opposite voltage dependence of time constant and relation between the time constant and energy of the trap states.展开更多
Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati...Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.展开更多
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ...Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.展开更多
In a grating-coupled high-electron-mobility transistor, weak terahertz emission with wavelength around 400um was observed by using a Fourier-transform spectrometer. The absolute terahertz emission power was extracted ...In a grating-coupled high-electron-mobility transistor, weak terahertz emission with wavelength around 400um was observed by using a Fourier-transform spectrometer. The absolute terahertz emission power was extracted from a strong background blackbody emission by using a modulation technique. The power of terahertz emission is proportional to the drain-source current, while the power of blackbody emission has a distinct relation with the electrical power. The dependence on the drain-source bias and the gate voltage suggests that the terahertz emission is induced by accelerated electrons interacting with the grating.展开更多
The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and...The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.展开更多
The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversi...The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversion.Unfortunately,these semiconductors have almost poor charge transport properties,which range from∼10^(−4) cm^(2)·V^(−1)·s^(−1) to∼10^(−2) cm^(2)·V^(−1)·s^(−1).Vat orange 3,as one of these organic semiconductors,has great potential due to its highly conjugated structure.We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional(2D)growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport.Raman’s results confirm the stability of the chemical structure of Vat orange 3 during growth.Furthermore,by leveraging the structural advantages of 2D materials,an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes,resulting in an excellent transistor performance with On/Off ratio of 104 and high field-effect mobility of 0.14 cm^(2)·V^(−1)·s^(−1).Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications.Furthermore,we showcase an approach that integrates organic semiconductors with 2D materials,aiming to offer new insights into the study of organic semiconductors.展开更多
Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through...Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.展开更多
This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojun...This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT.展开更多
Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. Th...Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp...Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61306113
文摘Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60736033)the Fundamental Research Funds for the Central Universities,China (Grant No. JY10000904009)
文摘A1GaN/GaN depletion-mode high-electron-mobility transistor (D-HEMT) and fluorine (F) plasma treated enhancement-mode high-electron-mobility transistor (E-HEMT) are exposed to 60Co gamma radiation with a dose of 1.6 Mrad (Si). No degradation is observed in the performance of D-HEMT. However, the maximum transeonductance of E-HEMT is increased after radiation. The 2DEG density and the mobility are calculated from the results of capacitance-voltage measurement. The electron mobility decreases after fluorine plasma treatment and recovers after radiation. Conductance measurements in a frequency range from 10 kHz to 1 MHz are used to characterize the trapping effects in the devices. A new type of trap is observed in the F plasma treated E-HEMT compared with the D-HEMT, but the density of the trap decreases by radiation. Fitting of Gp/w data yields the trap densities DT = (1-3)Х1012 cm^-2.eV^-1 and DT = (0,2-0.8)Х10^12 cm^2-eV^-1 before and after radiation, respectively. The time constant is 0.5 ms-6 ms. With F plasma treatment, the trap is introduced by etch damage and degrades the electronic mobility. After 60Co gamma radiation, the etch damage decreases and the electron mobility is improved. The gamma radiation can recover the etch damage caused by F plasma treatment.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 50932002)
文摘The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60Co γ-rays at a dose of 3 Mrad (Si), the E-mode HEMT reduces its saturation drain current and maximal transconductance by 6% and 5%, respectively, and significantly increases both forward and reverse gate currents, while its threshold voltage is affected only slightly. The obvious performance degradation of E-mode A1GaN/GaN HEMTs is consistent with the creation of electronegative surface state charges in the source-gate spacer and gate-drain spacer after being irradiated.
基金Project supported by the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0915)the National Natural Science Foundation of China (Grant Nos. 61106106 and 61204085)
文摘V-gate GaN high-electron-mobility transistors (HEMTs) are fabricated and investigated systematically. A V-shaped recess geometry is obtained using an improved Si3N4 recess etching technology. Compared with standard HEMTs, the fabricated V-gate HEMTs exhibit a 17% higher peak extrinsic transconductance due to a narrowed gate foot. Moreover, both the gate leakage and current dispersion are dramatically suppressed simultaneously, although a slight degradation of frequency response is observed. Based on a two-dimensional electric field simulation using Silvaco "ATLAS" for both standard HEMTs and V-gate HEMTs, the relaxation in peak electric field at the gate edge is identified as the predominant factor leading to the superior performance of V-gate HEMTs.
基金supported by the National Key Science & Technology Special Project (Grant No. 2008ZX01002-002)the National Natural Science Foundation of China (Grant No. 61106106)the Fundamental Research Funds for the Central Universities,China (Grant Nos. K50510250003 and K50510250006)
文摘AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current-gain cutoff frequency (fT) of 10 GHz and a power gain cutoff frequency (fmax) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C-V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C-V dual sweep.
基金supported by the National Natural Science Foundation of China(Grant No.62004150)Postdoctoral Science Foundation of China(Grant No.2018M643575)the Fundamental Research Funds for the Central Universities,and the Innovation Fund of Xidian University(Grant No.JB211104)。
文摘A novel normally-off AlGaN/GaN high-electron-mobility transistor(HEMT)with a p-GaN Schottky hybrid gate(PSHG)is proposed,and compared with the conventional p-GaN normally-off AlGaN/GaN HEMTs.This structure can be realized by selective etching of p-GaN layer,which enables the Schottky junction and PN junction to control the channel charge at the same time.The direct current(DC)and switching characteristics of the PSHG HEMTs are simulated by Slivaco TCAD,and the p-GaN HEMTs and conventional normally-on HEMTs are also simulated for comparison.The simulation results show that the PSHG HEMTs have a higher current density and a lower on-resistance than p-GaN HEMTs,which is more obvious with the decrease of p-GaN ratios of the PSHG HEMTs.The breakdown voltage and threshold voltage of the PSHG HEMTs are very close to those of the p-GaN HEMTs.In addition,the PSHG HEMTs have a higher switching speed than the conventional normally-on HEMTs,and the p-GaN layer ratio has no obvious effect on the switching speed.
文摘Superior characteristics of Al Ga N-channel metal-insulator-semiconductor(MIS) high electron mobility transistors(HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum saturation drain current for the Al GaN-channel MIS HEMT can be reduced by 50% compared with the Ga N-channel HEMT. Moreover, benefiting from the better suppression of gate current and reduced leakage current in the buffer layer, the Al Ga N-channel MIS HEMT demonstrates an average breakdown electric field of 1.83 MV/cm at25℃ and 1.06 MV/cm at 300℃, which is almost 2 times and 3 times respectively larger than that of the reference Ga N-channel HEMT. Pulsed mode analyses suggest that the proposed device suffers from smaller current collapse when the temperature reaches as high as 300℃.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61334002,61106106,and 61204085)
文摘The effects of gate length L_G on breakdown voltage VBRare investigated in AlGaN/GaN high-electron-mobility transistors(HEMTs) with L_G= 1 μm^20 μm. With the increase of L_G, VBRis first increased, and then saturated at LG= 3 μm. For the HEMT with L_G= 1 μm, breakdown voltage VBRis 117 V, and it can be enhanced to 148 V for the HEMT with L-_G= 3 μm. The gate length of 3 μm can alleviate the buffer-leakage-induced impact ionization compared with the gate length of 1 μm, and the suppression of the impact ionization is the reason for improving the breakdown voltage.A similar suppression of the impact ionization exists in the HEMTs with LG〉 3 μm. As a result, there is no obvious difference in breakdown voltage among the HEMTs with LG= 3 μm^20 μm, and their breakdown voltages are in a range of 140 V–156 V.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60976059 and 61106074the National Basic Research Program of China under Grant No 2011CB301704
文摘The capacitance-voltage characteristics of AIGaN/GaN high-electron-mobility transistors (HEMTS) are measured in the temperature range of 223-398K. The dependence of capacitance on frequency at various temperatures is analyzed. At lower temperatures, the capacitance decreases only very slightly with frequency. At higher frequencies the curves for all temperatures tend to one capacitance value. Such behavior can be attributed to the interface states or the dislocations.
基金supported by the National Natural Science Foundation of China(Grant Nos.61334002 and 61106106)
文摘Frequency-dependent conductance measurements were carried out to investigate the trap states induced by reactive ion etching in A1GaN/GaN high-electron-mobility transistors (HEMTs) quantitatively. For the non-recessed HEMT, the trap state density decreases from 2.48 × 1013 cm-2.eV-1 at an energy of 0.29 eV to 2.79 × 1012 cm-2.eV-1 at ET = 0.33 eV. In contrast, the trap state density of 2.38 × 1013-1.10× 1014 cm-2.eV-1 is located at ET in a range of 0.30-0.33 eV for the recessed HEMT. Thus, lots of trap states with shallow energy levels are induced by the gate recess etching. The induced shallow trap states can be changed into deep trap states by 350 ℃ annealing process. As a result, there are two different types of trap sates, fast and slow, in the annealed HEMT. The parameters of the annealed HEMT are ET = 0.29-0.31 eV and DT = 8.16× 1012-5.58 × 1013 cm-2.eV-1 for the fast trap states, and ET = 0.37-0.45 eV and DT = 1.84×1013- 8.50 × 1013 cm-2.eV-1 for the slow trap states. The gate leakage currents are changed by the etching and following annealing process, and this change can be explained by the analysis of the trap states.
基金Project supported by the Program for National Natural Science Foundation of China(Grant Nos.61404100 and 61306017)
文摘In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT(here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap states are found at both the Al2O3/In AlN and InAlN/GaN interface. Trap states in InAlN/GaN heterostructure are determined to have mixed de-trapping mechanisms, emission, and tunneling. Part of the electrons captured in the trap states are likely to tunnel into the two-dimensional electron gas(2DEG) channel under serious band bending and stronger electric field peak caused by high Al content in the In AlN barrier, which explains the opposite voltage dependence of time constant and relation between the time constant and energy of the trap states.
基金supported by the National Key R&D Plan of China(Grant No.2023YFB3210400)the National Natural Science Foundation of China(No.62174101)+2 种基金the Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC010603)the Fundamental Research Funds of Shandong University(2020QNQT001)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,the Natural Science Foundation of Qingdao-Original exploration project(No.24-4-4-zrjj-139-jch).
文摘Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
基金financially supported by the National Natural Science Foundation of China(Nos.52272160,U2330112,and 52002254)Sichuan Science and Technology Foundation(Nos.2020YJ0262,2021YFH0127,2022YFH0083,2022YFSY0045,and 2023YFSY0002)+1 种基金the Chunhui Plan of Ministry of Education,Fundamental Research Funds for the Central Universities,China(No.YJ201893)the Foundation of Key Laboratory of Lidar and Device,Sichuan Province,China(No.LLD2023-006)。
文摘Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.
基金Project supported by the National Basic Research Program of China(No.G2009CB929303)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.Y0BAQ31001)the National Natural Science Foundation of China(No.60871077)
文摘In a grating-coupled high-electron-mobility transistor, weak terahertz emission with wavelength around 400um was observed by using a Fourier-transform spectrometer. The absolute terahertz emission power was extracted from a strong background blackbody emission by using a modulation technique. The power of terahertz emission is proportional to the drain-source current, while the power of blackbody emission has a distinct relation with the electrical power. The dependence on the drain-source bias and the gate voltage suggests that the terahertz emission is induced by accelerated electrons interacting with the grating.
基金the National Natural Science Foundation of China(U21A20497)Singapore National Research Foundation Investigatorship(Grant No.NRF-NRFI08-2022-0009)。
文摘The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A6004,62375160,62274180,and 12004389).
文摘The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversion.Unfortunately,these semiconductors have almost poor charge transport properties,which range from∼10^(−4) cm^(2)·V^(−1)·s^(−1) to∼10^(−2) cm^(2)·V^(−1)·s^(−1).Vat orange 3,as one of these organic semiconductors,has great potential due to its highly conjugated structure.We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional(2D)growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport.Raman’s results confirm the stability of the chemical structure of Vat orange 3 during growth.Furthermore,by leveraging the structural advantages of 2D materials,an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes,resulting in an excellent transistor performance with On/Off ratio of 104 and high field-effect mobility of 0.14 cm^(2)·V^(−1)·s^(−1).Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications.Furthermore,we showcase an approach that integrates organic semiconductors with 2D materials,aiming to offer new insights into the study of organic semiconductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075316)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.21XNH091)(Q.R.)。
文摘Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.
基金supported by National Key Research and Development Program(2021YFB3600802)Shenzhen Municipal Scientific Program(JSGG20220831103803007,SGDX20211123145404006)Guangdong Basic and Applied Basic Research Foundation(2022A1515110029)
文摘This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1202600 and 2023YFE0208600)in part by the National Natural Science Foundation of China (Grant Nos. 62174082, 92364106, 61921005, 92364204, and 62074075)。
文摘Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.
基金supported by the National Key R&D Plan of China(Grant 2021YFB3600703)the National Natural Science Foundation(Grant 62204137)of China for Youth,the Open Research Fund Program of Beijing National Research Centre for Information Science and Technology(BR2023KF02009)+1 种基金the National Natural Science Foundation of china(U20A20168,61874065,and 51861145202)the Research Fund from Tsinghua University Initiative Scientific Research Program,the Center for Flexible Electronics Technology of Tsinghua University,and a grant from the Guoqiang Institute,Tsinghua University.
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.