In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiograp...In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiography are based on the assumption that the cone beam can be treated as fan beams located at parallel planes perpendicular to the symmetric axis,so that the density of the whole object can be recovered layer by layer.Considering the relationship between different layers,we undertake the cone-beam global reconstruction to solve the ambiguity effect at the material interfaces of the reconstruction results.In view of the anisotropy of classical discrete total variations,a new discretization of total variation which yields sharp edges and has better isotropy is introduced in our reconstruction model.Furthermore,considering that the object density consists of continually changing parts and jumps,a high-order regularization term is introduced.The final hybrid regularization model is solved using the alternating proximal gradient method,which was recently applied in image processing.Density reconstruction results are presented for simulated radiographs,which shows that the proposed method has led to an improvement in terms of the preservation of edge location.展开更多
We report on the design and first results from experiments looking at the formation of radiative shocks on the ShenguangII(SG-II)laser at the Shanghai Institute of Optics and Fine Mechanics in China.Laser-heating of a...We report on the design and first results from experiments looking at the formation of radiative shocks on the ShenguangII(SG-II)laser at the Shanghai Institute of Optics and Fine Mechanics in China.Laser-heating of a two-layer CH/CH–Br foil drives a∼40 km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar.The use of gas-cell targets with large(several millimetres)lateral and axial extent allows the shock to propagate freely without any wall interactions,and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved,pointprojection X-ray backlighting(∼20µm source size,4.3 keV photon energy).Single shocks were imaged up to 100 ns after the onset of the laser drive,allowing to probe the growth of spatial nonuniformities in the shock apex.These results are compared with experiments looking at counter-propagating shocks,showing a symmetric drive that leads to a collision and stagnation from∼40 ns onward.We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN,which provides expected plasma parameters for the design of future experiments in this facility.展开更多
基金supported by National Postdoctoral Program for Innovative Talents(BX201700038)supported by NSFC(11571003)+1 种基金supported by NSFC(11675021)supported by Beijing Natural Science Foundation(Z180002)。
文摘In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiography are based on the assumption that the cone beam can be treated as fan beams located at parallel planes perpendicular to the symmetric axis,so that the density of the whole object can be recovered layer by layer.Considering the relationship between different layers,we undertake the cone-beam global reconstruction to solve the ambiguity effect at the material interfaces of the reconstruction results.In view of the anisotropy of classical discrete total variations,a new discretization of total variation which yields sharp edges and has better isotropy is introduced in our reconstruction model.Furthermore,considering that the object density consists of continually changing parts and jumps,a high-order regularization term is introduced.The final hybrid regularization model is solved using the alternating proximal gradient method,which was recently applied in image processing.Density reconstruction results are presented for simulated radiographs,which shows that the proposed method has led to an improvement in terms of the preservation of edge location.
基金the Royal Society(UK)through a University Research Fellowship(URF-R-180032)a Research Fellows Enhancement Award(RGF-EA-180240)+2 种基金an International Exchanges grant(IES-R3-170140)a Research Grant(RG2017-R2)The authors would like to thank the operation group of the SG-II laser facility.C.S.acknowledges support from the French INSU-PNPS programme.U.C.acknowledges support by the project Advanced Research(CZ.02.1.01/0.0/0.0/16_019/0000789)from European Regional Development Fund(ADONIS)。
文摘We report on the design and first results from experiments looking at the formation of radiative shocks on the ShenguangII(SG-II)laser at the Shanghai Institute of Optics and Fine Mechanics in China.Laser-heating of a two-layer CH/CH–Br foil drives a∼40 km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar.The use of gas-cell targets with large(several millimetres)lateral and axial extent allows the shock to propagate freely without any wall interactions,and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved,pointprojection X-ray backlighting(∼20µm source size,4.3 keV photon energy).Single shocks were imaged up to 100 ns after the onset of the laser drive,allowing to probe the growth of spatial nonuniformities in the shock apex.These results are compared with experiments looking at counter-propagating shocks,showing a symmetric drive that leads to a collision and stagnation from∼40 ns onward.We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN,which provides expected plasma parameters for the design of future experiments in this facility.