The research on the collapse of stars, due to Gravity, after the depletion of the fusion fuel, engaged a number of famous guys as Eddington, Chandrasekhar, Schwarzschild and Oppenheimer in the years around 1910-1050. ...The research on the collapse of stars, due to Gravity, after the depletion of the fusion fuel, engaged a number of famous guys as Eddington, Chandrasekhar, Schwarzschild and Oppenheimer in the years around 1910-1050. During this period, Einstein was writing his field equation of general relativity (1923), Fermi, in a famous letter to Pauli, proposed the neutrino in beta decay theory (1930), Chadwick found the neutron, that granted him the Nobel price (1935) and Hubble (1929) proved that the Universe was expanding. As a result of that golden age, we remain with a lot of unsolved questions, due to the poor knowledge of the nature of the strong Nuclear Interaction of Gravity that controls the whole Universe. We have made an investigation on the nature of nuclear bond and gravitational attraction on the basis of available data and as a follow-up of Fermi famous research on Neutrino. Using this background, we hope to be able to explain or give some light to the evolution of stars, to the strange objects and phenomena captured or perceived by astronomers in the sky and speculated by theoretical physicists.展开更多
Science is losing some fixed references shifting from universality to relativity: time and space become space time, the meter is related to the velocity of light and the second is fixed by the ticketing of a Cesium at...Science is losing some fixed references shifting from universality to relativity: time and space become space time, the meter is related to the velocity of light and the second is fixed by the ticketing of a Cesium atom. In the case of Gravity, Nature was so friendly to Newton to allow him the writing of the Universal Gravitational Law, that changed the view of the Universe for the last three centuries. However, the way matter generates Gravity was unknown to Newton and the problem is still nowadays ignored by most scientists and remains the ultimate question mark of physics. We paid attention to the ticketing of all existing nuclides and found that the parameters of the neutronproton transformations are so precise, in describing these reactions, that can be considered universal constants. Instead, the emitted neutrino flux Fo is almost constant with a mean value of 6.668E20 neutrino per gram and second over the wide range of all nuclides with some deviation for lighter nuclei. This is the reason why Newton was able to find his Universal Gravitational Law and allows us today to state a relation of this flux with the Gauss constant G on the basis of nuclear properties. Moreover, it explains the mechanism that bodies use for their mutual attraction with a simplification of the three-body problem in celestial bodies computation. We have to remember that Newton model, with a fixed gravitational Gauss constant G, or the equivalent with a fixed neutrino flux Fo, have been used for the determination of the mass of the celestial bodies in motion with the implicit assumption that the gravitational and inertial mass are the same. In this paper we recognize the big difference in composition of the Sun and the gaseous planets compared to the terrestrial ones and show how the relatively small difference of the neutrino flux can change our vision of the Universe.展开更多
Using the GEANT4 and Cosmic Ray Monte Carlo(CRMC)software packages,we developed a new simulation toolkit for astrophysical neutrino telescopes.By configuring the Baikal-GVD detector and comparing the vertex position a...Using the GEANT4 and Cosmic Ray Monte Carlo(CRMC)software packages,we developed a new simulation toolkit for astrophysical neutrino telescopes.By configuring the Baikal-GVD detector and comparing the vertex position and direction of incident particles,as well as the channel-by-channel signals,to the events detected by Baikal-GVD,we successfully generated 13 high-energy cascade neutrino events with the toolkit.Our analysis revealed a systematic offset between the reconstructed shower position and the true interaction position,with a distance close to the scale of the shower maximum of−0.54±1.29 m.We achieved a good linear relationship between the photoelectron number of neutrino events obtained by simulation and the real data measured by Baikal-GVD.The simulation toolkit could serve as a reliable basis for studying the performance of astrophysical neutrino telescopes.展开更多
Time-domain astrophysics will enter a golden era towards the end of this decade with the advent of major facilities across the electromagnetic spectrum and in the multi-messenger realms of gravitational wave and neutr...Time-domain astrophysics will enter a golden era towards the end of this decade with the advent of major facilities across the electromagnetic spectrum and in the multi-messenger realms of gravitational wave and neutrino.In the soft X-ray regime,the novel micro-pore lobster-eye optics provides a promising technology to realise,for the first time,focusing X-ray optics for wide-angle monitors to achieve a good combination of sensitivity and wide field of view.In this context Einstein Probe,a soft X-ray all-sky monitor mission,was proposed and selected as a candidate mission of priority in the space science programme of the Chinese Academy of Sciences.This paper reviews the most important science developments and key questions in this field towards 2020 and beyond,and how to achieve them technologically.It also introduces the Einstein Probe mission,including its key science goals and mission definition,as well as some of the key technological issues.展开更多
Revised September 2013 with numbers verified by representatives of the synchrotrons (contact C.-J. Lin, LBNL). For existing (future) neutrino beam lines the latest achieved (design) values are given.
The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analys...The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analyses of the system are made in this paper by using the theory of nonequilibrium dynamics. It is showed that, in the nuclear reaction regions extending from the center to about 0.38 times of the radius of the sun, the gravitational field enables the core 3He nuclear reaction-diffusion system to become unstable and, after the instability, new states to appear in the system have characteristic of time oscillation. This may change the production rates of both 7Be and 8B neutrinos.展开更多
Detecting neutrinos associated with the still enigmatic sources of cosmic rays has reached a new watershed with the completion of IceCube, the first detector with sensitivity to the anticipated fluxes. In this review,...Detecting neutrinos associated with the still enigmatic sources of cosmic rays has reached a new watershed with the completion of IceCube, the first detector with sensitivity to the anticipated fluxes. In this review, we will briefly revisit the rationale for constructing kilometer-scale neutrino detectors and summarize the status of the field.展开更多
Recently,the B.O.A.T.(“brightest of all time”)gamma-ray burst,dubbed GRB 221009A,was detected by various instruments.Unprecedentedly,the GRB presented very-high-energy(VHE,energy above 0.1 Te V)gamma-ray emission wi...Recently,the B.O.A.T.(“brightest of all time”)gamma-ray burst,dubbed GRB 221009A,was detected by various instruments.Unprecedentedly,the GRB presented very-high-energy(VHE,energy above 0.1 Te V)gamma-ray emission with energy extending above 10 Te V,as reported by the Large High Altitude Air Shower Observatory(LHAASO).We here demonstrate that the VHE and especially>10 Te V emission may originate from the internal hadronic dissipation of the GRB,without the need of invoking any exotic processes as suggested by some previous studies.The possible prompt origin of LHAASO photons may imply the first detection of the GRB prompt phase in the VHE regime.We also discuss the constraints on the properties of the GRB ejecta from multiwavelength and multi-messenger observations,which favors a magnetically dominated GRB ejecta.The suggested Poynting-flux-dominated GRB ejecta in this work supports the Blandford&Znajek(BZ)mechanism as the possible central engine model of GRB,as well as the possible strong magnetic dissipation and acceleration.展开更多
由于大型宇宙线探测器Pierre Auger,Telescope Array等的观测,极高能宇宙线(能量大于1018 e V的宇宙线)的研究取得了很大进展,包括探测到高能能谱变陡,与河外天体源的可能相关性,以及化学成分组成等.然而这些宇宙线的起源天体仍未知.本...由于大型宇宙线探测器Pierre Auger,Telescope Array等的观测,极高能宇宙线(能量大于1018 e V的宇宙线)的研究取得了很大进展,包括探测到高能能谱变陡,与河外天体源的可能相关性,以及化学成分组成等.然而这些宇宙线的起源天体仍未知.本文将评述河外极高能宇宙线起源的候选天体,包括伽玛射线暴,活动星系核,巨超新星等.同时我们从多信使角度(包括高能中微子,伽玛光子的观测),探讨这些天体是河外极高能宇宙线起源天体的可能性.展开更多
With the successful realization of the current-generation of ground-based detectors, TeV Astronomy has entered into a new era. We review recent advances in VHE astronomy, focusing on the potential of Imaging Atmospher...With the successful realization of the current-generation of ground-based detectors, TeV Astronomy has entered into a new era. We review recent advances in VHE astronomy, focusing on the potential of Imaging Atmospheric Cherenkov Telescopes (IACTs), and highlight astrophysical implications of the results obtained within recent years.展开更多
The Fermi Gamma-ray Space Telescope, formerly called GLAST, measures the cosmic gamma-ray flux in the energy range 8 keV to 〉 300 GeV. In addition to breakthrough capabilities in energy coverage and localization, the...The Fermi Gamma-ray Space Telescope, formerly called GLAST, measures the cosmic gamma-ray flux in the energy range 8 keV to 〉 300 GeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20~ of the sky at any instant, and the entire sky on a timescale of a few hours. With its launch in 2008, Fermi opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origins of cosmic rays, and searches for hypothetical new phenomena such as particle dark matter annihilations. A brief overview and selected science highlights from the first four years are provided.展开更多
文摘The research on the collapse of stars, due to Gravity, after the depletion of the fusion fuel, engaged a number of famous guys as Eddington, Chandrasekhar, Schwarzschild and Oppenheimer in the years around 1910-1050. During this period, Einstein was writing his field equation of general relativity (1923), Fermi, in a famous letter to Pauli, proposed the neutrino in beta decay theory (1930), Chadwick found the neutron, that granted him the Nobel price (1935) and Hubble (1929) proved that the Universe was expanding. As a result of that golden age, we remain with a lot of unsolved questions, due to the poor knowledge of the nature of the strong Nuclear Interaction of Gravity that controls the whole Universe. We have made an investigation on the nature of nuclear bond and gravitational attraction on the basis of available data and as a follow-up of Fermi famous research on Neutrino. Using this background, we hope to be able to explain or give some light to the evolution of stars, to the strange objects and phenomena captured or perceived by astronomers in the sky and speculated by theoretical physicists.
文摘Science is losing some fixed references shifting from universality to relativity: time and space become space time, the meter is related to the velocity of light and the second is fixed by the ticketing of a Cesium atom. In the case of Gravity, Nature was so friendly to Newton to allow him the writing of the Universal Gravitational Law, that changed the view of the Universe for the last three centuries. However, the way matter generates Gravity was unknown to Newton and the problem is still nowadays ignored by most scientists and remains the ultimate question mark of physics. We paid attention to the ticketing of all existing nuclides and found that the parameters of the neutronproton transformations are so precise, in describing these reactions, that can be considered universal constants. Instead, the emitted neutrino flux Fo is almost constant with a mean value of 6.668E20 neutrino per gram and second over the wide range of all nuclides with some deviation for lighter nuclei. This is the reason why Newton was able to find his Universal Gravitational Law and allows us today to state a relation of this flux with the Gauss constant G on the basis of nuclear properties. Moreover, it explains the mechanism that bodies use for their mutual attraction with a simplification of the three-body problem in celestial bodies computation. We have to remember that Newton model, with a fixed gravitational Gauss constant G, or the equivalent with a fixed neutrino flux Fo, have been used for the determination of the mass of the celestial bodies in motion with the implicit assumption that the gravitational and inertial mass are the same. In this paper we recognize the big difference in composition of the Sun and the gaseous planets compared to the terrestrial ones and show how the relatively small difference of the neutrino flux can change our vision of the Universe.
基金Supported by the Department of Science and Technology of Sichuan Province,China(2023YFSY0014)the Innovation Fund(E25156U110 of IHEP),GHFUND A(202302019600)the framework of the State project"Science"by the Ministry of Science and Higher Education of the Russian Federation(075-15-2024-541)。
文摘Using the GEANT4 and Cosmic Ray Monte Carlo(CRMC)software packages,we developed a new simulation toolkit for astrophysical neutrino telescopes.By configuring the Baikal-GVD detector and comparing the vertex position and direction of incident particles,as well as the channel-by-channel signals,to the events detected by Baikal-GVD,we successfully generated 13 high-energy cascade neutrino events with the toolkit.Our analysis revealed a systematic offset between the reconstructed shower position and the true interaction position,with a distance close to the scale of the shower maximum of−0.54±1.29 m.We achieved a good linear relationship between the photoelectron number of neutrino events obtained by simulation and the real data measured by Baikal-GVD.The simulation toolkit could serve as a reliable basis for studying the performance of astrophysical neutrino telescopes.
基金Supported by the Strategic Priority Research Programme on Space Science of the Chinese Academy of Sciences(XDA04061100)
文摘Time-domain astrophysics will enter a golden era towards the end of this decade with the advent of major facilities across the electromagnetic spectrum and in the multi-messenger realms of gravitational wave and neutrino.In the soft X-ray regime,the novel micro-pore lobster-eye optics provides a promising technology to realise,for the first time,focusing X-ray optics for wide-angle monitors to achieve a good combination of sensitivity and wide field of view.In this context Einstein Probe,a soft X-ray all-sky monitor mission,was proposed and selected as a candidate mission of priority in the space science programme of the Chinese Academy of Sciences.This paper reviews the most important science developments and key questions in this field towards 2020 and beyond,and how to achieve them technologically.It also introduces the Einstein Probe mission,including its key science goals and mission definition,as well as some of the key technological issues.
文摘Revised September 2013 with numbers verified by representatives of the synchrotrons (contact C.-J. Lin, LBNL). For existing (future) neutrino beam lines the latest achieved (design) values are given.
文摘The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analyses of the system are made in this paper by using the theory of nonequilibrium dynamics. It is showed that, in the nuclear reaction regions extending from the center to about 0.38 times of the radius of the sun, the gravitational field enables the core 3He nuclear reaction-diffusion system to become unstable and, after the instability, new states to appear in the system have characteristic of time oscillation. This may change the production rates of both 7Be and 8B neutrinos.
基金This research was supported in part by the U.S. National Science Foundation under Grants No. OPP-0236449 and PHY-0969061, the U.S. Department of Energy under Grant No. DE-FG02-95ER40896, and the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation.
文摘Detecting neutrinos associated with the still enigmatic sources of cosmic rays has reached a new watershed with the completion of IceCube, the first detector with sensitivity to the anticipated fluxes. In this review, we will briefly revisit the rationale for constructing kilometer-scale neutrino detectors and summarize the status of the field.
基金supported by the National Natural Science Foundation of China(Grant Nos.12003007,U2031105,U1931201,and U1931203)the Fundamental Research Funds for the Central Universities(Grant No.2020kfy XJJS039)the China Manned Space Project(Grant No.CMSCSST-2021-B11)。
文摘Recently,the B.O.A.T.(“brightest of all time”)gamma-ray burst,dubbed GRB 221009A,was detected by various instruments.Unprecedentedly,the GRB presented very-high-energy(VHE,energy above 0.1 Te V)gamma-ray emission with energy extending above 10 Te V,as reported by the Large High Altitude Air Shower Observatory(LHAASO).We here demonstrate that the VHE and especially>10 Te V emission may originate from the internal hadronic dissipation of the GRB,without the need of invoking any exotic processes as suggested by some previous studies.The possible prompt origin of LHAASO photons may imply the first detection of the GRB prompt phase in the VHE regime.We also discuss the constraints on the properties of the GRB ejecta from multiwavelength and multi-messenger observations,which favors a magnetically dominated GRB ejecta.The suggested Poynting-flux-dominated GRB ejecta in this work supports the Blandford&Znajek(BZ)mechanism as the possible central engine model of GRB,as well as the possible strong magnetic dissipation and acceleration.
文摘由于大型宇宙线探测器Pierre Auger,Telescope Array等的观测,极高能宇宙线(能量大于1018 e V的宇宙线)的研究取得了很大进展,包括探测到高能能谱变陡,与河外天体源的可能相关性,以及化学成分组成等.然而这些宇宙线的起源天体仍未知.本文将评述河外极高能宇宙线起源的候选天体,包括伽玛射线暴,活动星系核,巨超新星等.同时我们从多信使角度(包括高能中微子,伽玛光子的观测),探讨这些天体是河外极高能宇宙线起源天体的可能性.
文摘With the successful realization of the current-generation of ground-based detectors, TeV Astronomy has entered into a new era. We review recent advances in VHE astronomy, focusing on the potential of Imaging Atmospheric Cherenkov Telescopes (IACTs), and highlight astrophysical implications of the results obtained within recent years.
文摘The Fermi Gamma-ray Space Telescope, formerly called GLAST, measures the cosmic gamma-ray flux in the energy range 8 keV to 〉 300 GeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20~ of the sky at any instant, and the entire sky on a timescale of a few hours. With its launch in 2008, Fermi opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origins of cosmic rays, and searches for hypothetical new phenomena such as particle dark matter annihilations. A brief overview and selected science highlights from the first four years are provided.