In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR ...In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.展开更多
High-resolution X-ray flash radiography of Ti characteristic lines with a multilayer Kirkpatrick-Baez microscope was developed on the Shenguang-Ⅱ(SG-Ⅱ)Update laser facility.The microscope uses an optimized multilaye...High-resolution X-ray flash radiography of Ti characteristic lines with a multilayer Kirkpatrick-Baez microscope was developed on the Shenguang-Ⅱ(SG-Ⅱ)Update laser facility.The microscope uses an optimized multilayer design of Co/C and W/C stacks to obtain a high reflection efficiency of the Ti characteristic lines while meeting the precise alignment requirement at the Cu Kα line.The alignment method based on dual simulated balls was proposed herein,which simultaneously realizes an accurate indication of the center field of view and the backlighter position.The optical design,multilayer coatings,and alignment method of the microscope and the experimental result of Ti flash radiography of the Au-coned CH shell target on the SG-Ⅱ Update are described.展开更多
A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was develope...A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ~MV, with 1.75 ~ 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the local spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.展开更多
In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiograp...In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiography are based on the assumption that the cone beam can be treated as fan beams located at parallel planes perpendicular to the symmetric axis,so that the density of the whole object can be recovered layer by layer.Considering the relationship between different layers,we undertake the cone-beam global reconstruction to solve the ambiguity effect at the material interfaces of the reconstruction results.In view of the anisotropy of classical discrete total variations,a new discretization of total variation which yields sharp edges and has better isotropy is introduced in our reconstruction model.Furthermore,considering that the object density consists of continually changing parts and jumps,a high-order regularization term is introduced.The final hybrid regularization model is solved using the alternating proximal gradient method,which was recently applied in image processing.Density reconstruction results are presented for simulated radiographs,which shows that the proposed method has led to an improvement in terms of the preservation of edge location.展开更多
文摘In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.
基金supported by the National Natural Science Foundation of China(No.11805212)National Key Research and Development Program of China(No.2019YFE03080200)Fundamental Research Funds for the Central Universities(No.22120200405)。
文摘High-resolution X-ray flash radiography of Ti characteristic lines with a multilayer Kirkpatrick-Baez microscope was developed on the Shenguang-Ⅱ(SG-Ⅱ)Update laser facility.The microscope uses an optimized multilayer design of Co/C and W/C stacks to obtain a high reflection efficiency of the Ti characteristic lines while meeting the precise alignment requirement at the Cu Kα line.The alignment method based on dual simulated balls was proposed herein,which simultaneously realizes an accurate indication of the center field of view and the backlighter position.The optical design,multilayer coatings,and alignment method of the microscope and the experimental result of Ti flash radiography of the Au-coned CH shell target on the SG-Ⅱ Update are described.
基金supported by National Natural Science Foundation of China (Grant Nos. 11305128 and 11505142)the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR.1503)
文摘A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ~MV, with 1.75 ~ 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the local spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.
基金supported by National Postdoctoral Program for Innovative Talents(BX201700038)supported by NSFC(11571003)+1 种基金supported by NSFC(11675021)supported by Beijing Natural Science Foundation(Z180002)。
文摘In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiography are based on the assumption that the cone beam can be treated as fan beams located at parallel planes perpendicular to the symmetric axis,so that the density of the whole object can be recovered layer by layer.Considering the relationship between different layers,we undertake the cone-beam global reconstruction to solve the ambiguity effect at the material interfaces of the reconstruction results.In view of the anisotropy of classical discrete total variations,a new discretization of total variation which yields sharp edges and has better isotropy is introduced in our reconstruction model.Furthermore,considering that the object density consists of continually changing parts and jumps,a high-order regularization term is introduced.The final hybrid regularization model is solved using the alternating proximal gradient method,which was recently applied in image processing.Density reconstruction results are presented for simulated radiographs,which shows that the proposed method has led to an improvement in terms of the preservation of edge location.