X-ray in-line phase contrast imaging enables weakly to absorb specimens to be imaged successfully with high resolution and definition. In this paper we use computer simulation method to analyze how each parameter infl...X-ray in-line phase contrast imaging enables weakly to absorb specimens to be imaged successfully with high resolution and definition. In this paper we use computer simulation method to analyze how each parameter influences the quality of the image. It can avoid wasting unnecessary time and materials in the course of experiment to get ideal images.展开更多
To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light source...To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.展开更多
Propagation-based phase-contrast imaging was simulated based on paraxial Fresnel-Kirchoff diffraction integral and spherical wave illumination. Under a developed micro-CT system parameters, the effects of focal-spot s...Propagation-based phase-contrast imaging was simulated based on paraxial Fresnel-Kirchoff diffraction integral and spherical wave illumination. Under a developed micro-CT system parameters, the effects of focal-spot size and imaging geometry on phase-contrast imaging have been investigated using a 2-mm-thickness polystyrene edge phantom. An equivalent mono-energy was used to substitute the polychromatic spectrum of the micro-focus X-ray source. To consider effects of focal-spot size and detector resolution, the obtained phase-contrast image with an ideal point source was convolved with source intensity distribution and point spread function of detector. Simulations show reasonable influences of the two parameters which are in good agreement with experimental results.展开更多
文摘X-ray in-line phase contrast imaging enables weakly to absorb specimens to be imaged successfully with high resolution and definition. In this paper we use computer simulation method to analyze how each parameter influences the quality of the image. It can avoid wasting unnecessary time and materials in the course of experiment to get ideal images.
基金supported by National Natural Science Foundation of China(No.11475202,11405187)the Youth Innovation Association of Chinese Academy of SciencesKey Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH001)
文摘To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.
基金National Natural Science Foundation of Chinagrant number:61002041,61102161+3 种基金National 973 Basic Research Program of Chinagrant number:2010CB7326002010-Guangdong Province Innovational Research Team Program and Programs of Shenzhengrant number:JC201005270313A,JC201005280493A,JC201005280581A,ZYA201006300034A
文摘Propagation-based phase-contrast imaging was simulated based on paraxial Fresnel-Kirchoff diffraction integral and spherical wave illumination. Under a developed micro-CT system parameters, the effects of focal-spot size and imaging geometry on phase-contrast imaging have been investigated using a 2-mm-thickness polystyrene edge phantom. An equivalent mono-energy was used to substitute the polychromatic spectrum of the micro-focus X-ray source. To consider effects of focal-spot size and detector resolution, the obtained phase-contrast image with an ideal point source was convolved with source intensity distribution and point spread function of detector. Simulations show reasonable influences of the two parameters which are in good agreement with experimental results.