The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generali...The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. .展开更多
ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and mi...ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and microstructural properties of the samples obtained by both methods was made. The best results on these characteristics were achieved through the high-energy ball milling varistor ceramic powder route, obtaining a nonlinear coefficient of 57 and a breakdown field of 617 V/mm at a sintering temperature of 1000 ℃ for 3 h. The samples synthesized by this technique show not only high density value, 95% of the theoretical density, but also a homogeneous microstructure, which compete with those obtained by the high-energy ball milling oxide-doped powder route. With the advantage that the high-energy ball milling varistor ceramic powder route can refine grain, increase the driving force of sintering, accelerate the sintering process, and reduce the sintering temperature.展开更多
At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification micro...At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification microstructure were investigated in order to better study the mechanism of UST. It is considered that the overflowing phenomenon occurs due to the changes of vibration and flow in the remaining semisolid. Because the overflowed portion comes from the region with intense UST effect and vibrates with the probe during solidification, great modification of primary and euteetic Si (about 10 pm in length) and refinement of primary a(Al) (about 70 μm in size) are observed in this portion.展开更多
TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The ...TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing.展开更多
Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders bal...Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.展开更多
The time evolution of system in two photon Jaynes Cummings (J C) model without rotating waves approximation (RWA) is obtained by using the theory of ordinary differential equations. Based on the evolution, the mean ...The time evolution of system in two photon Jaynes Cummings (J C) model without rotating waves approximation (RWA) is obtained by using the theory of ordinary differential equations. Based on the evolution, the mean value of the atom inversion operator 〈 S 3(t)〉 is gi ven. The influence of the “counter rotating term” on the collapse and revival phenomenon is discussed from the comparison between the cases with RWA and without RWA. It shows that the influence of the virtual photon field makes the quantum fluctuations appear on the collapse and revival phenomenon.展开更多
A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
The Pearl River Mouth Basin (PRMB) covers an area of approximately 20× 104 km2.However,oil-gas fields detected in this area thus far are highly concentrated and controlled predominantly by second-order structur...The Pearl River Mouth Basin (PRMB) covers an area of approximately 20× 104 km2.However,oil-gas fields detected in this area thus far are highly concentrated and controlled predominantly by second-order structural belts,the seven largest of which aggregate proved oil reserves of 7.7× 108 m3,accounting for 86% of the total discovered reserve in the basin.These second-order structures have one common phenomenon:oil is contained in all traps present in them.In other words,they are all belt-wide petroliferous reservoirs.Research has identified eight types of second-order structural belts under two categories in the eastern PRMB.Their petroliferous properties are subject to three typical constraints:petroliferous properties of subsags hosting these structural belts,locations of these belts in the petroleum system,and availability of traps prior to the hydrocarbon expulsion and migration.The formation and distribution of oil reservoirs in these belts are characterized by subsag-belt integration and "three-in-one".The former indicates that sags and the second-order structural belts within the supply range of the sags constitute the basic units of hydrocarbon accumulations and are therefore inseparable.The latter indicates that a belt-wide petroliferous second-order structural belt always contains three important elements:hydrocarbon richness,effective pathway and pre-existing traps.展开更多
Researchers reported that intravenously injected PEGylated colloidal drug carriers lose their long-circulating characteristic and accumulated extensively in liver when they are administrated twice in the same animal w...Researchers reported that intravenously injected PEGylated colloidal drug carriers lose their long-circulating characteristic and accumulated extensively in liver when they are administrated twice in the same animal with certain intervals. This phenomenon was referred to as the 'accelerated blood clearance(ABC) phenomenon'. Some former studies had found that complement-mediated phagocytosis, activated by antigen–antibody complex, was responsible for inducing the phenomenon. According to the theory, we have used cobra venom factor to deplete complement in vivo and to investigate the effect of complement inhibition on the ABC phenomenon. Rats were administered by injection of cobra venom factor solution to build up the model of complement exhaustion/inhibition, and the effect of the inhibition of complement on ABC phenomenon was carried out. It seemed that inhibition of complement didn’t affect the pharmacokinetic of the first infection. By contrast, in rats of which complement had been depleted, the second dose of PEGylated nanoemulsions showed enhanced circulation time compared with normal rats in a complement inhibition-independent manner, but the ABC phenomenon was not completely eliminated. It indicated that complement inhibition could certainly weaken the accelerated clearance;meanwhile, there were other factors causing the ABC effect.These findings provide novel insights into the attenuating of ABC phenomenon and lay foundation for further study of immune mechanism.展开更多
PEGylated liposomes are potential candidates to improve the pharmacokinetic characteristics of encapsulated drugs, to extend their circulation half-life and facilitate their passive accumulation at tumour sites. Howev...PEGylated liposomes are potential candidates to improve the pharmacokinetic characteristics of encapsulated drugs, to extend their circulation half-life and facilitate their passive accumulation at tumour sites. However, PEG-modified liposomes can induce accelerated blood clearance(ABC) upon repeated administration, and the extent of ABC phenomenon on the cytotoxic drugs-containing PEGylated liposomes is related to the dose of the cytotoxic drugs.In this study, EPI served as a model cytotoxic drug, a hydrophilic surfactant molecule,monosialylganglioside(GM1) was chosen and modified on the liposomes together with PEG.It was shown that upon mixed modification, when GM1 contents reached 10% or 15% mol,the ABC phenomenon of the PEGylated liposomal EPI significantly reduced. We also found that GM1 played an important role in abrogating the ABC phenomenon in both the induction phase and the effectuation phase. The results suggested that GM1 incorporation unfortunately did not avoid occurrence of ABC phenomenon completely, but GM1 modification on PEGylated liposomes may provide a significant improvement in clinical practice of PEGylated liposomes. Further study must be necessary.展开更多
High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety is...High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density.Here we hypothesize that a cobalt vanadate oxide,Co_(2)VO_(4),can be attractive anode material for fast-charging LIBs due to its high capacity(~1000 mAh g^(−1))and safe lithiation potential(~0.65 V vs.Li^(+)/Li).The Li+diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15×10^(-10) cm^(2) s^(−1),proving Co_(2)VO_(4) a promising anode in fast-charging LIBs.A hexagonal porous Co2VO4 nanodisk(PCVO ND)structure is designed accordingly,featuring a high specific surface area of 74.57 m^(2) g^(−1) and numerous pores with a pore size of 14 nm.This unique structure succeeds in enhancing Li^(+) and electron transfer,leading to superior fast-charging performance than current commercial anodes.As a result,the PCVO ND shows a high initial reversible capacity of 911.0 mAh g^(−1) at 0.4 C,excellent fast-charging capacity(344.3 mAh g^(−1) at 10 C for 1000 cycles),outstanding long-term cycling stability(only 0.024% capacity loss per cycle at 10 C for 1000 cycles),confirming the commercial feasibility of PCVO ND in fast-charging LIBs.展开更多
Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and ant...Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry.展开更多
The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of ther...The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations(PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations(ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method(FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.展开更多
Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED patt...Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption.展开更多
The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaens...The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.展开更多
The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrysta...The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrystallized material were dynamically measured by means of the vibrating reed apparatus. The results implied that different treatment time could induce different microstructure and distribution characteristic of defects in this kind of materials. It is also demonstrated that there is a transition layer between the nano-layer on surface and the coarse grain region inside. The transition layer obviously has certain influence on the overall mechanical properties.展开更多
For investigating the accelerated blood clearance(ABC) phenomenon of polyglycerin modified nanoemulsions upon cross administration with polyethylene glycol(PEG) covered nanoemulsion, we used the 1,2-distea-royl-sn-gly...For investigating the accelerated blood clearance(ABC) phenomenon of polyglycerin modified nanoemulsions upon cross administration with polyethylene glycol(PEG) covered nanoemulsion, we used the 1,2-distea-royl-sn-glycero-3-phosphoethanolamine-npolyglycerine-610 and the 1,2-distearoyl-n-glycero-3-phosphoethanolamine-n-[methoxy(polyethylene glycol)-2000] as modify materials, the dialkylcarbocyanines as fluorescence indicator. Exhausted macrophages rat model was established and new material containing polycarboxyl structure was synthesized. The microplate reader and the in vivo optical imaging system were applied to measure the concentration of nanoemulsions in tissues.The results show that the first dose of polyglycerin modified nanoemulsion can induce the ABC phenomenon of the second dose of PEGylated nanoemulsion. With the increase in the amount of the surface polyglycerin, the extent of the ABC phenomenon decreases. Liver accumulation has positive relationship with the ABC phenomenon. Furthermore, kupffer cells in liver can get more immune information from polyhydroxy structure than polycarboxyl group in the modify compound. The results of our work imply that the polycarboxyl structure has advantages to eliminate the ABC phenomenon.展开更多
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great ...It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great interest in exploring advanced rechargeable lithium batteries with desirable energy and power capabilities for applications in portable electronics,smart grids,and electric vehicles.In practice,high-capacity and low-cost electrode materials play an important role in sustaining the progresses in lithium-ion batteries.This review aims at giving an account of recent advances on the emerging high-capacity electrode materials and summarizing key barriers and corresponding strategies for the practical viability of these electrode materials.Effective approaches to enhance energy density of lithium-ion batteries are to increase the capacity of electrode materials and the output operation voltage.On account of major bottlenecks of the power lithium-ion battery,authors come up with the concept of integrated battery systems,which will be a promising future for high-energy lithium-ion batteries to improve energy density and alleviate anxiety of electric vehicles.展开更多
文摘The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. .
基金Project (BK2011243) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject (EIPE11204) supported by the State Key Laboratory of Electrical Insulation and Power Equipment,China+4 种基金Project (KF201104) supported by the State Key Laboratory of New Ceramic and Fine Processing,ChinaProject (KFJJ201105) supported by the Opening Project of State Key Laboratory of Electronic Thin Films and Integrated Devices,ChinaProject (2011-22) supported by State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,ChinaProject (10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province,ChinaProject (11JDG084) supported by the Research Foundation of Jiangsu University,China
文摘ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and microstructural properties of the samples obtained by both methods was made. The best results on these characteristics were achieved through the high-energy ball milling varistor ceramic powder route, obtaining a nonlinear coefficient of 57 and a breakdown field of 617 V/mm at a sintering temperature of 1000 ℃ for 3 h. The samples synthesized by this technique show not only high density value, 95% of the theoretical density, but also a homogeneous microstructure, which compete with those obtained by the high-energy ball milling oxide-doped powder route. With the advantage that the high-energy ball milling varistor ceramic powder route can refine grain, increase the driving force of sintering, accelerate the sintering process, and reduce the sintering temperature.
基金Project(50874022)supported by the National Natural Science Foundation of China
文摘At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification microstructure were investigated in order to better study the mechanism of UST. It is considered that the overflowing phenomenon occurs due to the changes of vibration and flow in the remaining semisolid. Because the overflowed portion comes from the region with intense UST effect and vibrates with the probe during solidification, great modification of primary and euteetic Si (about 10 pm in length) and refinement of primary a(Al) (about 70 μm in size) are observed in this portion.
基金Project(51174098)supported by the National Natural Science Foundation of ChinaProject(kjsmcx0903)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China+2 种基金Project(1202015B)supported by the Postdoctoral Science Foundation of Jiangsu Province,ChinaProject(03)supported by the Undergraduate Practice-Innovation Training Foundation of Jiangsu University,ChinaProjects(GY2012020,GY2013032)supported by the Science and Technology Support Plan Project Foundation of Zhenjiang City,China
文摘TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing.
基金Project(51104066)supported by the National Natural Science Foundation of ChinaProjects(2015A010105011,2015A020214008)supported by Science and Technology Program of Guangdong Province,ChinaProject(201505040925029)supported by Science and Technology Research Program of Guangzhou,China
文摘Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.
文摘The time evolution of system in two photon Jaynes Cummings (J C) model without rotating waves approximation (RWA) is obtained by using the theory of ordinary differential equations. Based on the evolution, the mean value of the atom inversion operator 〈 S 3(t)〉 is gi ven. The influence of the “counter rotating term” on the collapse and revival phenomenon is discussed from the comparison between the cases with RWA and without RWA. It shows that the influence of the virtual photon field makes the quantum fluctuations appear on the collapse and revival phenomenon.
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
文摘The Pearl River Mouth Basin (PRMB) covers an area of approximately 20× 104 km2.However,oil-gas fields detected in this area thus far are highly concentrated and controlled predominantly by second-order structural belts,the seven largest of which aggregate proved oil reserves of 7.7× 108 m3,accounting for 86% of the total discovered reserve in the basin.These second-order structures have one common phenomenon:oil is contained in all traps present in them.In other words,they are all belt-wide petroliferous reservoirs.Research has identified eight types of second-order structural belts under two categories in the eastern PRMB.Their petroliferous properties are subject to three typical constraints:petroliferous properties of subsags hosting these structural belts,locations of these belts in the petroleum system,and availability of traps prior to the hydrocarbon expulsion and migration.The formation and distribution of oil reservoirs in these belts are characterized by subsag-belt integration and "three-in-one".The former indicates that sags and the second-order structural belts within the supply range of the sags constitute the basic units of hydrocarbon accumulations and are therefore inseparable.The latter indicates that a belt-wide petroliferous second-order structural belt always contains three important elements:hydrocarbon richness,effective pathway and pre-existing traps.
基金supported by the National Natural Science Foundation of China(Grant No.81373334)
文摘Researchers reported that intravenously injected PEGylated colloidal drug carriers lose their long-circulating characteristic and accumulated extensively in liver when they are administrated twice in the same animal with certain intervals. This phenomenon was referred to as the 'accelerated blood clearance(ABC) phenomenon'. Some former studies had found that complement-mediated phagocytosis, activated by antigen–antibody complex, was responsible for inducing the phenomenon. According to the theory, we have used cobra venom factor to deplete complement in vivo and to investigate the effect of complement inhibition on the ABC phenomenon. Rats were administered by injection of cobra venom factor solution to build up the model of complement exhaustion/inhibition, and the effect of the inhibition of complement on ABC phenomenon was carried out. It seemed that inhibition of complement didn’t affect the pharmacokinetic of the first infection. By contrast, in rats of which complement had been depleted, the second dose of PEGylated nanoemulsions showed enhanced circulation time compared with normal rats in a complement inhibition-independent manner, but the ABC phenomenon was not completely eliminated. It indicated that complement inhibition could certainly weaken the accelerated clearance;meanwhile, there were other factors causing the ABC effect.These findings provide novel insights into the attenuating of ABC phenomenon and lay foundation for further study of immune mechanism.
基金supported by the National Natural Science Foundation of China (Grant No.81373334)
文摘PEGylated liposomes are potential candidates to improve the pharmacokinetic characteristics of encapsulated drugs, to extend their circulation half-life and facilitate their passive accumulation at tumour sites. However, PEG-modified liposomes can induce accelerated blood clearance(ABC) upon repeated administration, and the extent of ABC phenomenon on the cytotoxic drugs-containing PEGylated liposomes is related to the dose of the cytotoxic drugs.In this study, EPI served as a model cytotoxic drug, a hydrophilic surfactant molecule,monosialylganglioside(GM1) was chosen and modified on the liposomes together with PEG.It was shown that upon mixed modification, when GM1 contents reached 10% or 15% mol,the ABC phenomenon of the PEGylated liposomal EPI significantly reduced. We also found that GM1 played an important role in abrogating the ABC phenomenon in both the induction phase and the effectuation phase. The results suggested that GM1 incorporation unfortunately did not avoid occurrence of ABC phenomenon completely, but GM1 modification on PEGylated liposomes may provide a significant improvement in clinical practice of PEGylated liposomes. Further study must be necessary.
基金supported by the National Key Research and Development Project(2018YFE0124800)the National Nature Science Foundation of China(51702157,51873086,51673096).
文摘High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density.Here we hypothesize that a cobalt vanadate oxide,Co_(2)VO_(4),can be attractive anode material for fast-charging LIBs due to its high capacity(~1000 mAh g^(−1))and safe lithiation potential(~0.65 V vs.Li^(+)/Li).The Li+diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15×10^(-10) cm^(2) s^(−1),proving Co_(2)VO_(4) a promising anode in fast-charging LIBs.A hexagonal porous Co2VO4 nanodisk(PCVO ND)structure is designed accordingly,featuring a high specific surface area of 74.57 m^(2) g^(−1) and numerous pores with a pore size of 14 nm.This unique structure succeeds in enhancing Li^(+) and electron transfer,leading to superior fast-charging performance than current commercial anodes.As a result,the PCVO ND shows a high initial reversible capacity of 911.0 mAh g^(−1) at 0.4 C,excellent fast-charging capacity(344.3 mAh g^(−1) at 10 C for 1000 cycles),outstanding long-term cycling stability(only 0.024% capacity loss per cycle at 10 C for 1000 cycles),confirming the commercial feasibility of PCVO ND in fast-charging LIBs.
基金National Natural Science Foundation of China(No.52002149)Shenzhen Technical Plan Projects(Nos.JC201105201100A and JCYJ20160301154114273)for financial support.
文摘Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry.
文摘The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations(PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations(ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method(FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.
基金supported by the National Natural Science Foundation of China (Grant No. 60866001)the Special Assistant to High-Level Personnel Research Projects of Guizhou Provincial Party Committee Organization Department of China (Grant No. TZJF- 2008-31)+3 种基金the Support Plan of New Century Excellent Talents of Ministry of Education, China (Grant No. NCET-08-0651)the Doctorate Foundation of the State Education Ministry of China (Grant No. 20105201110003)the Special Governor Fund of Outstanding Professionals in Science and Technology and Education of Guizhou Province, China (Grant No. 2009114)the Doctoral Foundation Projects of Guizhou College of Finance and Economics in 2010
文摘Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption.
基金Project(51274257) supported by the National Natural Science Foundation of ChinaProject(U1232103) supported by the Joint Funds of National Natural Science Foundation of China and Large Scientific Facility Foundation of Chinese Academy of Sciences+1 种基金Project(VR-12419) supported by the Beijing Synchrotron Radiation Facility Public User Program,ChinaProject(15ssrf00924) supported by the Shanghai Institute of Applied Physics Open Fund of Shanghai Synchrotron Radiation Facility,China
文摘The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.
文摘The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrystallized material were dynamically measured by means of the vibrating reed apparatus. The results implied that different treatment time could induce different microstructure and distribution characteristic of defects in this kind of materials. It is also demonstrated that there is a transition layer between the nano-layer on surface and the coarse grain region inside. The transition layer obviously has certain influence on the overall mechanical properties.
基金supported by the National Natural Science Foundation of China (Grant Nos.81072602,81373334)
文摘For investigating the accelerated blood clearance(ABC) phenomenon of polyglycerin modified nanoemulsions upon cross administration with polyethylene glycol(PEG) covered nanoemulsion, we used the 1,2-distea-royl-sn-glycero-3-phosphoethanolamine-npolyglycerine-610 and the 1,2-distearoyl-n-glycero-3-phosphoethanolamine-n-[methoxy(polyethylene glycol)-2000] as modify materials, the dialkylcarbocyanines as fluorescence indicator. Exhausted macrophages rat model was established and new material containing polycarboxyl structure was synthesized. The microplate reader and the in vivo optical imaging system were applied to measure the concentration of nanoemulsions in tissues.The results show that the first dose of polyglycerin modified nanoemulsion can induce the ABC phenomenon of the second dose of PEGylated nanoemulsion. With the increase in the amount of the surface polyglycerin, the extent of the ABC phenomenon decreases. Liver accumulation has positive relationship with the ABC phenomenon. Furthermore, kupffer cells in liver can get more immune information from polyhydroxy structure than polycarboxyl group in the modify compound. The results of our work imply that the polycarboxyl structure has advantages to eliminate the ABC phenomenon.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
基金supported by National Natural Science Foundation of China(No.51902340)Chongqing Natural Science Foundation,and Chongqing Postdoctoral Science Foundation(No.2021000051).
文摘It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great interest in exploring advanced rechargeable lithium batteries with desirable energy and power capabilities for applications in portable electronics,smart grids,and electric vehicles.In practice,high-capacity and low-cost electrode materials play an important role in sustaining the progresses in lithium-ion batteries.This review aims at giving an account of recent advances on the emerging high-capacity electrode materials and summarizing key barriers and corresponding strategies for the practical viability of these electrode materials.Effective approaches to enhance energy density of lithium-ion batteries are to increase the capacity of electrode materials and the output operation voltage.On account of major bottlenecks of the power lithium-ion battery,authors come up with the concept of integrated battery systems,which will be a promising future for high-energy lithium-ion batteries to improve energy density and alleviate anxiety of electric vehicles.