The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits ...The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature.展开更多
We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air hole...We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.展开更多
Fast beam range measurements are required to maximize the time available for patient treatment, given that the beam range requires verification with respect to quality assurance to maintain accelerator commissioning s...Fast beam range measurements are required to maximize the time available for patient treatment, given that the beam range requires verification with respect to quality assurance to maintain accelerator commissioning standards and ensure patient safety. A novel beam range monitor based on a plastic scintillator and multi-pixel photon counter (MPPC) arrays is therefore proposed in this paper. The monitor was constructed using 128 plastic scintillator films with a thickness of 1 mm and an active area of 50 × 50 mm^(2). A customized MPPC array read the scintillation light of each film. The advantage of dividing the active detector volume into films is that it intercepts the particle beam and enables direct differential light yield measurement in each film, in addition to depth-light curve generation without the need for image analysis A GEANT4 simulation, including scintillator quenching effects, was implemented, and the results revealed that Birks’ law exhibited a slight little influence on the position of the beam range, only changing the shape and absolute normalization of the Bragg curve, which is appropriate for the calculation of the beam range using the depth-light curve. The performance of the monitor was evaluated using a heavy-ion medical machine in Wuwei City, Gansu Province, China. The beam range measurement accuracy of the monitor was 1 mm, and the maximum difference between the measured and reference ranges was less than0.2%, thus indicating that the monitor can meet clinica carbon ion therapy requirements.展开更多
Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states pr...Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications.展开更多
In this paper,in order to stabilize the position and angle of the light source point,a new photon beam position feedback system based on the Photon Beam Position Monitors was developed on Hefei Light Source,and used t...In this paper,in order to stabilize the position and angle of the light source point,a new photon beam position feedback system based on the Photon Beam Position Monitors was developed on Hefei Light Source,and used to correct the position drift and angle variation of the light source at the same time.On introducing the feedback principle,the transfer function matrix is calibrated,indicating that the new system is workable and effective.展开更多
In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided m...In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguldes is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.Sttm. A finite-difference tlme-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.展开更多
We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed...We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed greatly by the second-order surface plasmon polariton (SPP) and the resonant coupling between the surface plasmon modes and the fiber-core guided modes can enhance the directional power transfer in the two fiber-cores. Numerical results by using the finite element method show the extinction ratio at the wavethlengths of 1.327 μm and 1.55 μm can reach -58 dB and -60 dB and the bandwidths as the extinction ratio better than -12 dB are about 54 nm and 47 nm, respectively. Compared with the gold-unfilled DC-PCF, a 1.746-mm-long gold-filled DC-PCF is better applied to the polarization beam splitter in the two communication bands of λ = 1.327 μm and 1.55 μm.展开更多
A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into ...A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams.Triangular-lattice graded-index PCs are combined for focusing each branch.Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design.The waveguide is unnecessary in the design.Thus the device has functions of both splitting and focusing beams.Size of the divided beam at site of full-width at half-maximum is of the order of λ/2.The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process展开更多
The effect of the size of radiotherapy photon beams on the absorbed dose to an Al2O3 dosimeter was investigated using the Monte Carlo method. The EGSnrc/DOSRZnrc program code was used to simulate the absorbed dose to ...The effect of the size of radiotherapy photon beams on the absorbed dose to an Al2O3 dosimeter was investigated using the Monte Carlo method. The EGSnrc/DOSRZnrc program code was used to simulate the absorbed dose to the Al2O3 dosimeter, as well as the absorbed dose to water at the corresponding position in the absence of the dosimeter. The incident beams were 60Co γ and 6 MV with a different beam radius ranging from 0.1 cm to 2 cm. Results revealed that the absorbed dose ratio factor depends on the size of the incident photon beam. When the radius of the incident beam is smaller than that of the dosimeter, the absorbed dose ratio factor decreases as the incident beam size increases. The absorbed dose ratio factor reaches its minimum when the radius of the incident beam is almost the same as that of the dosimeter. When the radius of the incident beam is larger than that of the dosimeter, the absorbed dose ratio factor increases as the incident beam size increases. The maximum difference among these absorbed dose ratio factors can be up to 14% in 60Co γ beams and 23% in 6 MV beams. However, when the size of the incident beam is much larger than that of the dosimeter, the effect of the incident beam size on the absorbed dose ratio factor becomes quite small. The maximum discrepancy between the absorbed dose ratio factors and the average value is not more than 1%.展开更多
This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut...This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.展开更多
We investigate the optical characteristic,transverse magnetic(TM) and transverse electric(TE) band of twodimensional(2 D) square lattice photonic crystal structure,which is composed of cylindrical air regions po...We investigate the optical characteristic,transverse magnetic(TM) and transverse electric(TE) band of twodimensional(2 D) square lattice photonic crystal structure,which is composed of cylindrical air regions positioned at the corners of the square shaped dielectric rods.We obtain the wide photonic bandwidths between TM1–TM2 and TM3–TM4 bands.According to the results,we demonstrate the band gaps close to each other in the TM and TE frequencies for proposed structures.The resulting photonic gaps are formed to be about 8% at the higher frequencies of TE modes(TE4–TE5)and TM modes(TM7–TM8 and TM9–TM10).In addition,we examine isotropically generated structures for light guiding properties and observe that the light is directed in a particular route without using any deflection.We also investigate the self-collimation effect with the designed structure.The obtained results reveal the influences of the radius of cylindrical air holes and the angle between these air holes on absolute and partial photonic band gaps.Moreover,we observe the TM and TE band gaps that overlap.It is thought that the obtained band overlap will provide an easy way to produce the photonic crystals in practical applications like photonic insensitive waveguide.It is also believed that these results can provide the photonic crystal structures to work as a beam deflecting and beam router in integrated optical circuit applications.展开更多
Cone-beam computed tomography (CBCT) images have inaccurate CT numbers because of scattered photons. Thus, quantitative analysis of scattered photons that affect an electron density (ED) curve and calculated doses may...Cone-beam computed tomography (CBCT) images have inaccurate CT numbers because of scattered photons. Thus, quantitative analysis of scattered photons that affect an electron density (ED) curve and calculated doses may be effective information to achieve CBCT-based radiation treatment planning. We quantitatively evaluated the effect of scattered photons on the accuracy of dose calculations from a lung image. The Monte Carlo method was used to calculate CBCT projection data, and we made two calibration curves for conditions with or without scattered photons. Moreover, we applied cupping artifact correction and evaluated the effects on image uniformity and dose calculation accuracy. Dose deviations were compared with those of conventional CT in conventional and volumetric intensity modulated arc therapy (VMAT) planning by using γ analysis and dose volume histogram (DVH) analysis. We found that cupping artifacts contaminated the scattered photons, and the γ analysis showed that the dose distribution was most decreased for a scattered photon ratio of 40%. Cupping artifact correction significantly improved image uniformity;therefore, ED curves were near ideal, and the pass rate results were significantly higher than those associated with the scattered photon effect in 65.1% and 78.4% without correction, 99.5% and 97.7% with correction, in conventional and VMAT planning, respectively. In the DVH analysis, all organ dose indexes were reduced in the scattered photon images, but dose index error rates with cupping artifact correction were improved within approximately 10%. CBCT image quality was strongly affected by scattered photons, and the dose calculation accuracy based on the CBCT image was improved by removing cupping artifacts caused by the scattered photons.展开更多
Aim: Electron, photon or proton beams are used in radiotherapy for cancer treatment while each one may be used depending on depth and the location of tumor and normal tissues around the treatment target as well as eco...Aim: Electron, photon or proton beams are used in radiotherapy for cancer treatment while each one may be used depending on depth and the location of tumor and normal tissues around the treatment target as well as economic issues. Materials and Methods: In this research, dose distribution by proton was measured by film dosimetry in nasal cavity Plexiglas phantom and Monte Carlo simulation. Then the DVH of treatment target and the posterior of treatment target of different beams were compared. The energies of electron, photon and proton were 9 MeV, 6 MV, and maximum 65 MeV, respectively. Due to a depth of 3.5 cm of CTV (Clinical Target Volume), Modulation Range was between 0 - 3.5 cm and SOBP (Spread-out Bragg Peak) was between 0 - 65 MeV. Results: Comparing the obtained DVH values, 95% dose coverage of target volume for electron, photon, proton and Photon-Electron beams were 88%, 98%, 98%, and 95%, respectively. However, doses above 40% that reached outside the target were 50%, 82%, 5%, and 44%, respectively. Conclusions: The results demonstrate the superiority of proton therapy in nasal cancer due to its better target volume coverage and the less amount of the dose reaching outside the target that is because of dose discharge in a small area and significant dose fall-off after Bragg peak.展开更多
A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetr...A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetrical elliptic dual-core structure.By using the full-vector finite element method,the propagation characteristics of the proposed DC-PCF PBS are investigated.The simulation results show that the bandwidth of the proposed DC-PCF PBS can reach to 340 nm,which covers the S+C+L+U communication bands,the shortest splitting length is 1.97 mm,and the maximum extinction ratio appears near wavelength 1550 nm.Moreover,the insertion loss of the proposed DC-PCF PBS is very low.It is believed that the proposed DC-PCF PBS has important applications in the field of all-optical communication and network.展开更多
A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials bas...A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials based on the transport properties of Gaussian beams in positive and negative refractive index materials.Furthermore,detailed discussions are provided on the APT scattering matrix,eigenstate ratio,and response near exceptional points in the case of loss or gain.In contrast to the unidirectional non-reflection in parity-time(PT)symmetric systems,the transverse shift that arises from both sides of the APT structure is consistent.By effectively adjusting the parameters of APT materials,we achieve giant displacements of the transverse shift.Finally,we present a multi-layer APT structure consisting of alternating left-handed and right-handed materials.By increasing the number of layers,Bragg oscillations can be generated,leading to an increase in resonant peaks in transverse shift.This study presents a new approach to achieving giant transverse shifts in the APT structure.This lays a theoretical foundation for the fabrication of related nano-optical devices.展开更多
AIMTo investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the...AIMTo investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness.METHODSClinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe<sub>2</sub>O<sub>3</sub> nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness.RESULTSIt was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For other nanoparticles with lower atomic number, DERs in the range of 0.99-1.02 were found using the 4 and 6 MeV electron beams.CONCLUSIONIn nanoparticle-enhanced skin therapy, Au nanoparticle addition can achieve the highest dose enhancement with 105 kVp photon beams. Electron beams, while popular for skin therapy, did not produce as high dose enhancements as kV photon beams. Additionally, the DER is dependent on nanoparticle type, nanoparticle concentration, skin target thickness and energies of the photon and electron beams.展开更多
Reasons are given for a Doppler shift on the number of observed (sensed) photons in a light beam not just a shift in frequency, also a similar (non-relativistic) effect on the number of observed (sensed) particles (wi...Reasons are given for a Doppler shift on the number of observed (sensed) photons in a light beam not just a shift in frequency, also a similar (non-relativistic) effect on the number of observed (sensed) particles (with non-zero rest mass) in a particle beam. Optics texts have neither effect.展开更多
As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam positio...As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam position monitor based on position-sensitive detector (PSD) has been developed to measure the photon beam position in vertical and horizontal directions at the same time at HLS (Hefei Light Source). The new PBPM based on the PSD has fast response speed, high sensitivity and wide dynamic range. This PBPM system also includes the C4674 signal processing circuit, NI USB-9215 data acquisition device and the LABVIEW data acquisition program. This PBPM system has been calibrated vertically and horizontally on-line, and then has been applied in the beam line B3EA of HLS to measure the position of the synchrotron light. As the results shown, the resolution of the system is better than 3 mm.展开更多
Various aspects of the influence of the quasi-real photons and the Coulomb resonances on the formation of the crosssection of inelastic scattering of high energy electrons on atomic nuclei are investigated. Emiss is t...Various aspects of the influence of the quasi-real photons and the Coulomb resonances on the formation of the crosssection of inelastic scattering of high energy electrons on atomic nuclei are investigated. Emiss is the energy that disappears in the processes of knocking-on of protons in the reactions . A new hypothesis that interprets the origin of the energy losses is proposed. Specific experiments that can confirm or refute this hypothesis are proposed as well. The “regularized” cross-sections of electro-disintegration of nuclei by high-energy electrons are calculated in the framework of the nuclear shell model. It is shown that for the experimental verification of the existence of Coulomb resonances, it is necessary to investigate the processes at relatively small angles of scattering. The peculiarities of numerical methods that are crucial in the investigation of inelastic scattering of high-energy electrons on nuclei in the framework of the nuclear shell model are analyzed in this work as well. The cross-sections of the scattering of high-energy electrons on the angle are calculated. It is shown that the orthogonality of the wave functions of a knocked-on proton in the initial and final states plays an important role in the interpretation of this process.展开更多
In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of no...In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of nonlinear states, we propose a very useful scheme for generating the maximal amount of entanglement via unitary beam splitters for different strength regimes of the input field α, deformation q and excitation number m. Therefore, the possibility to create highly entangled states and to control the entanglement is proposed. Moreover, the condition for a maximal and separable output beam state is obtained. Finally, we examine the statistical properties of the PAf-DCSs through the Mandel parameter and exploit a connection between this quantity and the behavior variation of the output state entanglement. Our result may open new perspectives in different tasks of quantum information processing.展开更多
文摘The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178026)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.
基金supported by the National Natural Science Foundation of China (Nos.11675232 and 12175286)。
文摘Fast beam range measurements are required to maximize the time available for patient treatment, given that the beam range requires verification with respect to quality assurance to maintain accelerator commissioning standards and ensure patient safety. A novel beam range monitor based on a plastic scintillator and multi-pixel photon counter (MPPC) arrays is therefore proposed in this paper. The monitor was constructed using 128 plastic scintillator films with a thickness of 1 mm and an active area of 50 × 50 mm^(2). A customized MPPC array read the scintillation light of each film. The advantage of dividing the active detector volume into films is that it intercepts the particle beam and enables direct differential light yield measurement in each film, in addition to depth-light curve generation without the need for image analysis A GEANT4 simulation, including scintillator quenching effects, was implemented, and the results revealed that Birks’ law exhibited a slight little influence on the position of the beam range, only changing the shape and absolute normalization of the Bragg curve, which is appropriate for the calculation of the beam range using the depth-light curve. The performance of the monitor was evaluated using a heavy-ion medical machine in Wuwei City, Gansu Province, China. The beam range measurement accuracy of the monitor was 1 mm, and the maximum difference between the measured and reference ranges was less than0.2%, thus indicating that the monitor can meet clinica carbon ion therapy requirements.
基金the National Natural Science Foundation of China(11974119)Science and Technology Project of Guangdong(2020B010190001)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06C594)National Key R&D Program of China(2018YFA 0306200).
文摘Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications.
基金Supported by National Natural Science Foundation of China(No.10675118,and No.11175173)
文摘In this paper,in order to stabilize the position and angle of the light source point,a new photon beam position feedback system based on the Photon Beam Position Monitors was developed on Hefei Light Source,and used to correct the position drift and angle variation of the light source at the same time.On introducing the feedback principle,the transfer function matrix is calibrated,indicating that the new system is workable and effective.
基金supported by National Key Basic Research Special Fund of China (Grand No 2006CB921701-705)
文摘In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguldes is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.Sttm. A finite-difference tlme-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.
基金supported by the National Natural Science Foundation of China(Grant Nos.61178026)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed greatly by the second-order surface plasmon polariton (SPP) and the resonant coupling between the surface plasmon modes and the fiber-core guided modes can enhance the directional power transfer in the two fiber-cores. Numerical results by using the finite element method show the extinction ratio at the wavethlengths of 1.327 μm and 1.55 μm can reach -58 dB and -60 dB and the bandwidths as the extinction ratio better than -12 dB are about 54 nm and 47 nm, respectively. Compared with the gold-unfilled DC-PCF, a 1.746-mm-long gold-filled DC-PCF is better applied to the polarization beam splitter in the two communication bands of λ = 1.327 μm and 1.55 μm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010)the Fundamental Research Funds for the Central Universities,China (Grant Nos. ZYGX2011YB020 and ZYGX2010J112)
文摘A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams.Triangular-lattice graded-index PCs are combined for focusing each branch.Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design.The waveguide is unnecessary in the design.Thus the device has functions of both splitting and focusing beams.Size of the divided beam at site of full-width at half-maximum is of the order of λ/2.The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process
基金supported by the Science and Technology Project for University and Research Institute of Dongguan of China (No. 200910814045)
文摘The effect of the size of radiotherapy photon beams on the absorbed dose to an Al2O3 dosimeter was investigated using the Monte Carlo method. The EGSnrc/DOSRZnrc program code was used to simulate the absorbed dose to the Al2O3 dosimeter, as well as the absorbed dose to water at the corresponding position in the absence of the dosimeter. The incident beams were 60Co γ and 6 MV with a different beam radius ranging from 0.1 cm to 2 cm. Results revealed that the absorbed dose ratio factor depends on the size of the incident photon beam. When the radius of the incident beam is smaller than that of the dosimeter, the absorbed dose ratio factor decreases as the incident beam size increases. The absorbed dose ratio factor reaches its minimum when the radius of the incident beam is almost the same as that of the dosimeter. When the radius of the incident beam is larger than that of the dosimeter, the absorbed dose ratio factor increases as the incident beam size increases. The maximum difference among these absorbed dose ratio factors can be up to 14% in 60Co γ beams and 23% in 6 MV beams. However, when the size of the incident beam is much larger than that of the dosimeter, the effect of the incident beam size on the absorbed dose ratio factor becomes quite small. The maximum discrepancy between the absorbed dose ratio factors and the average value is not more than 1%.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.10874145)the Specialized Research Fund for Doctorial Program of Higher Education(Grant No.20091333110010)+1 种基金the Natural Science Foundation of Heibei Province, China(Grant No.F2009000481)the China Postdoctoral Science Foundation(Grant Nos.20080440014 and 200902046)
文摘This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.
文摘We investigate the optical characteristic,transverse magnetic(TM) and transverse electric(TE) band of twodimensional(2 D) square lattice photonic crystal structure,which is composed of cylindrical air regions positioned at the corners of the square shaped dielectric rods.We obtain the wide photonic bandwidths between TM1–TM2 and TM3–TM4 bands.According to the results,we demonstrate the band gaps close to each other in the TM and TE frequencies for proposed structures.The resulting photonic gaps are formed to be about 8% at the higher frequencies of TE modes(TE4–TE5)and TM modes(TM7–TM8 and TM9–TM10).In addition,we examine isotropically generated structures for light guiding properties and observe that the light is directed in a particular route without using any deflection.We also investigate the self-collimation effect with the designed structure.The obtained results reveal the influences of the radius of cylindrical air holes and the angle between these air holes on absolute and partial photonic band gaps.Moreover,we observe the TM and TE band gaps that overlap.It is thought that the obtained band overlap will provide an easy way to produce the photonic crystals in practical applications like photonic insensitive waveguide.It is also believed that these results can provide the photonic crystal structures to work as a beam deflecting and beam router in integrated optical circuit applications.
文摘Cone-beam computed tomography (CBCT) images have inaccurate CT numbers because of scattered photons. Thus, quantitative analysis of scattered photons that affect an electron density (ED) curve and calculated doses may be effective information to achieve CBCT-based radiation treatment planning. We quantitatively evaluated the effect of scattered photons on the accuracy of dose calculations from a lung image. The Monte Carlo method was used to calculate CBCT projection data, and we made two calibration curves for conditions with or without scattered photons. Moreover, we applied cupping artifact correction and evaluated the effects on image uniformity and dose calculation accuracy. Dose deviations were compared with those of conventional CT in conventional and volumetric intensity modulated arc therapy (VMAT) planning by using γ analysis and dose volume histogram (DVH) analysis. We found that cupping artifacts contaminated the scattered photons, and the γ analysis showed that the dose distribution was most decreased for a scattered photon ratio of 40%. Cupping artifact correction significantly improved image uniformity;therefore, ED curves were near ideal, and the pass rate results were significantly higher than those associated with the scattered photon effect in 65.1% and 78.4% without correction, 99.5% and 97.7% with correction, in conventional and VMAT planning, respectively. In the DVH analysis, all organ dose indexes were reduced in the scattered photon images, but dose index error rates with cupping artifact correction were improved within approximately 10%. CBCT image quality was strongly affected by scattered photons, and the dose calculation accuracy based on the CBCT image was improved by removing cupping artifacts caused by the scattered photons.
文摘Aim: Electron, photon or proton beams are used in radiotherapy for cancer treatment while each one may be used depending on depth and the location of tumor and normal tissues around the treatment target as well as economic issues. Materials and Methods: In this research, dose distribution by proton was measured by film dosimetry in nasal cavity Plexiglas phantom and Monte Carlo simulation. Then the DVH of treatment target and the posterior of treatment target of different beams were compared. The energies of electron, photon and proton were 9 MeV, 6 MV, and maximum 65 MeV, respectively. Due to a depth of 3.5 cm of CTV (Clinical Target Volume), Modulation Range was between 0 - 3.5 cm and SOBP (Spread-out Bragg Peak) was between 0 - 65 MeV. Results: Comparing the obtained DVH values, 95% dose coverage of target volume for electron, photon, proton and Photon-Electron beams were 88%, 98%, 98%, and 95%, respectively. However, doses above 40% that reached outside the target were 50%, 82%, 5%, and 44%, respectively. Conclusions: The results demonstrate the superiority of proton therapy in nasal cancer due to its better target volume coverage and the less amount of the dose reaching outside the target that is because of dose discharge in a small area and significant dose fall-off after Bragg peak.
基金Project supported by the National Key Research and Development Project of China(Grant No.2019YFB2204001)。
文摘A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetrical elliptic dual-core structure.By using the full-vector finite element method,the propagation characteristics of the proposed DC-PCF PBS are investigated.The simulation results show that the bandwidth of the proposed DC-PCF PBS can reach to 340 nm,which covers the S+C+L+U communication bands,the shortest splitting length is 1.97 mm,and the maximum extinction ratio appears near wavelength 1550 nm.Moreover,the insertion loss of the proposed DC-PCF PBS is very low.It is believed that the proposed DC-PCF PBS has important applications in the field of all-optical communication and network.
基金the Natural Science Foundation of Guangdong Province(Grant Nos.2018A030313480 and 2022A1515012377)。
文摘A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials based on the transport properties of Gaussian beams in positive and negative refractive index materials.Furthermore,detailed discussions are provided on the APT scattering matrix,eigenstate ratio,and response near exceptional points in the case of loss or gain.In contrast to the unidirectional non-reflection in parity-time(PT)symmetric systems,the transverse shift that arises from both sides of the APT structure is consistent.By effectively adjusting the parameters of APT materials,we achieve giant displacements of the transverse shift.Finally,we present a multi-layer APT structure consisting of alternating left-handed and right-handed materials.By increasing the number of layers,Bragg oscillations can be generated,leading to an increase in resonant peaks in transverse shift.This study presents a new approach to achieving giant transverse shifts in the APT structure.This lays a theoretical foundation for the fabrication of related nano-optical devices.
文摘AIMTo investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness.METHODSClinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe<sub>2</sub>O<sub>3</sub> nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness.RESULTSIt was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For other nanoparticles with lower atomic number, DERs in the range of 0.99-1.02 were found using the 4 and 6 MeV electron beams.CONCLUSIONIn nanoparticle-enhanced skin therapy, Au nanoparticle addition can achieve the highest dose enhancement with 105 kVp photon beams. Electron beams, while popular for skin therapy, did not produce as high dose enhancements as kV photon beams. Additionally, the DER is dependent on nanoparticle type, nanoparticle concentration, skin target thickness and energies of the photon and electron beams.
文摘Reasons are given for a Doppler shift on the number of observed (sensed) photons in a light beam not just a shift in frequency, also a similar (non-relativistic) effect on the number of observed (sensed) particles (with non-zero rest mass) in a particle beam. Optics texts have neither effect.
基金Supported by the National Science Foundation of China (10675118, 11175173)
文摘As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam position monitor based on position-sensitive detector (PSD) has been developed to measure the photon beam position in vertical and horizontal directions at the same time at HLS (Hefei Light Source). The new PBPM based on the PSD has fast response speed, high sensitivity and wide dynamic range. This PBPM system also includes the C4674 signal processing circuit, NI USB-9215 data acquisition device and the LABVIEW data acquisition program. This PBPM system has been calibrated vertically and horizontally on-line, and then has been applied in the beam line B3EA of HLS to measure the position of the synchrotron light. As the results shown, the resolution of the system is better than 3 mm.
文摘Various aspects of the influence of the quasi-real photons and the Coulomb resonances on the formation of the crosssection of inelastic scattering of high energy electrons on atomic nuclei are investigated. Emiss is the energy that disappears in the processes of knocking-on of protons in the reactions . A new hypothesis that interprets the origin of the energy losses is proposed. Specific experiments that can confirm or refute this hypothesis are proposed as well. The “regularized” cross-sections of electro-disintegration of nuclei by high-energy electrons are calculated in the framework of the nuclear shell model. It is shown that for the experimental verification of the existence of Coulomb resonances, it is necessary to investigate the processes at relatively small angles of scattering. The peculiarities of numerical methods that are crucial in the investigation of inelastic scattering of high-energy electrons on nuclei in the framework of the nuclear shell model are analyzed in this work as well. The cross-sections of the scattering of high-energy electrons on the angle are calculated. It is shown that the orthogonality of the wave functions of a knocked-on proton in the initial and final states plays an important role in the interpretation of this process.
文摘In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of nonlinear states, we propose a very useful scheme for generating the maximal amount of entanglement via unitary beam splitters for different strength regimes of the input field α, deformation q and excitation number m. Therefore, the possibility to create highly entangled states and to control the entanglement is proposed. Moreover, the condition for a maximal and separable output beam state is obtained. Finally, we examine the statistical properties of the PAf-DCSs through the Mandel parameter and exploit a connection between this quantity and the behavior variation of the output state entanglement. Our result may open new perspectives in different tasks of quantum information processing.