期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma
1
作者 Xueming Li Size Yang Xingfang Wu 《Journal of University of Science and Technology Beijing》 CSCD 2006年第3期272-276,共5页
Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitroge... Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C 1s and N 1s spectra shift to lower binding energy due to the formation of C--Si and N--Si bonds. The Si--C--N bonds were observed in the deconvolved C ls and N ls spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM). 展开更多
关键词 silicon carbide nitride pulsed high-energy density plasma chemical bonding state
下载PDF
Electrochemical characteristics of ternary and quadruple lithium silicon nitrides as anode material for lithium ion batteries:the influence of precursors
2
作者 WEN Zhongsheng TIAN Feng +2 位作者 SUN Juncai JI Shijun XIE Jingying 《Rare Metals》 SCIE EI CAS CSCD 2008年第2期170-174,共5页
Ternary and quadruple lithium silicon nitride anode materials for lithium ion batteries with different precursors were prepared by the simple process of high-energy ball milling. High capacity and excellent cyclabilit... Ternary and quadruple lithium silicon nitride anode materials for lithium ion batteries with different precursors were prepared by the simple process of high-energy ball milling. High capacity and excellent cyclability were obtained. The influence of precursor introduction on the electrochemical performance of products was investigated. This research reveals that the electrochemical performance of lithium silicon hitilde can be enhanced significantly by doping O. The cyclability of quadruple lithium silicon nitfide can be optimized remarkably by controlling the introduction quantity of the precursors. It is possible for the composite to be used as a capacity compensator within a wide voltage cut-off window. 展开更多
关键词 lithium ion batteries high-capacity electrode material high-energy ball milling lithium silicon nitride wide voltage cut-off window
下载PDF
Preliminary investigations of a potential optics system for wideband X-ray telescopes
3
作者 Liqiang Qi Tianxiang Chen +4 位作者 Zhengwei Li Qianqing Yin Congzhan Liu Weichun Jiang Lin Li 《Astronomical Techniques and Instruments》 CSCD 2024年第6期335-344,共10页
We present preliminary investigations of a potential optics system for wideband X-ray telescopes.The optical design adopts the conical approximation of the Wolter-I configuration and a combination of multilayer coatin... We present preliminary investigations of a potential optics system for wideband X-ray telescopes.The optical design adopts the conical approximation of the Wolter-I configuration and a combination of multilayer coatings and silicon pore optics.The total number of mirror modules is 79,distributed in 8 rows with the radii at the intersection plane between 250 mm and 500 mm.The optimization of the total effective area using the figure of merits method suggests that the focal length is 30 m and the mirror coating is a combination of the W/Si and Pt/C multilayers.This fulfills the on-axis effective area requirements of 2000 cm^(2) at 10 keV and 300 cm^(2) at 60 keV and provides a broad energy response between 3 keV and 78.4 keV.With the current geometry and coating compositions,we implement a mass modeling of the telescope in Geant4 to predict mirror performances via the ray-tracing algorithm,including the angular resolution and effective area.With the presumed metrological data as input,this can provide precision and finishing requirements for the manufacture of optics.This work demonstrates the feasibility of combining multilayer coatings and silicon pore optics for potential use in wideband X-ray telescopes and advances the development and progress of such missions. 展开更多
关键词 Depth-graded multilayer silicon pore optics Wideband X-ray telescope high-energy astrophysics
下载PDF
Beam shaping in the high-energy kW-class laser system Bivoj at the HiLASE facility
4
作者 Tomáš Paliesek Petr Navrátil +3 位作者 Jan Pilar Martin Divoký Martin Smrž Tomáš Mocek 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2023年第6期130-138,共9页
A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj.The shaping s... A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj.The shaping system corrects for gain nonuniformity and wavefront aberrations of the front-end of the system.The beam intensity profile and the wavefront at the output of the front-end were successfully improved by shaping.The beam homogeneity defined by the beam quality parameters was improved two to three times.The root-mean-square value of the wavefront was improved more than 10 times.Consequently,the shaped beam from the second preamplifier led to improvement of the beam profile at the output of the first main cryo-amplifier.The shaping system is also capable of creating nonordinary beam shapes,imprinting cross-references into the beam,or masking certain parts of the beam. 展开更多
关键词 beam shaping high-average-power laser high-energy laser liquid crystal on silicon spatial light modulator wavefront shaping
原文传递
Scalable synthesis of N-doped Si/G@voids@C with porous structures for high-performance anode of lithium-ion batteries 被引量:2
5
作者 Lei Wang Yan Jiang +5 位作者 Shao-Yuan Li Xiu-Hua Chen Feng-Shuo Xi Xiao-Han Wan Wen-Hui Ma Rong Deng 《Rare Metals》 SCIE EI CAS CSCD 2023年第12期4091-4102,共12页
The co-utilization of silicon(Si) and graphite(G) has been considered as the preferred strategy to achieve high energy density anode materials,but the effective synergistic integration of Si and graphite is still a ch... The co-utilization of silicon(Si) and graphite(G) has been considered as the preferred strategy to achieve high energy density anode materials,but the effective synergistic integration of Si and graphite is still a challenge and it is necessary to find a scheme to accommodate the large-scale production of Si/graphite anodes.In this work,silicon cutting waste from the photovoltaic industry was used as raw material,mixed with graphite,pitch,and polyvinylpyrrolidone,and subjected to high-energy ball milling.The mixture was then heated in an Ar atmosphere for the carbon coating,and the resulting Si/graphite/carbon(Si/G/C) composite was etched to remove the thicker SiOx layer formed on the Si surface to allow the pores between the Si and the carbon matrix to obtain Si@voids/G@C.Benefiting from the integrated structural design and the significantly enhanced electronic conductivity,the Si/G@voids@C composite exhibited the first dischargespecific capacity of 2530 mAh·g^(-1) with an initial coulombic efficiency(ICE) of 86.7%,and the remaining capacity exceeded 1000 mAh·g^(-1) after 550 cycles at 1.5A·g^(-1).Notably,full lithium-ion batteries with a Si/G@voids@C anode and LiFePO_4 cathode delivered a stable capacity of 140 mAh·g^(-1).The synthesis method is facile and cost-effective,providing an integration strategy for Si and G with a potential scheme for large-scale commercial applications. 展开更多
关键词 silicon/graphite anodes Surface coating Integration strategy silicon cutting waste high-energy ball milling Lithium-ion battery(LIB)
原文传递
Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering 被引量:3
6
作者 Hansang Kwon Marc Leparoux Akira Kawasaki 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第8期736-742,共7页
Functionally graded(FG) carbon nanotubes(CNT) and nano-silicon carbide(nSiC) reinforced aluminium(Al)matrix composites have been successfully fabricated using high-energy ball milling followed by solid-state s... Functionally graded(FG) carbon nanotubes(CNT) and nano-silicon carbide(nSiC) reinforced aluminium(Al)matrix composites have been successfully fabricated using high-energy ball milling followed by solid-state spark plasma sintering processes.The CNTs were well-dispersed in the Al particles using the nSiC as a solid mixing agent.Two different types of multi-walled CNTs were used to add different amounts of CNTs in the same volume.The ball milled Al—CNT—nSiC and Al—CNT powder mixtures were fully densified and demonstrated good adhesion with no serious microcracks and pores within an FG multilayer composite.Each layer contained different amounts of the CNTs,and the nSiC additions showed different microstructures and hardness.It is possible to control the characteristics of the FG multilayer composite through the efficient design of an Al—CNT—nSiC gradient layer.This concept offers a feasible approach for fabricating the dualnanoparticulate-reinforced Al matrix nanocomposites and can be applied to other scenarios such as polymer and ceramic systems. 展开更多
关键词 Carbon nanotubes(CNT) silicon carbide high-energy ball milling Spark plasma sintering(SPS) Functionally graded materials(FGM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部