Rockburst;Rockburst damage;Yielding rockbolt;Numerical modeling;UDEC;Underground miningThe assessment of yielding rockbolt performance during rockbursts with actual seismic loading is essential for rock-burst supporti...Rockburst;Rockburst damage;Yielding rockbolt;Numerical modeling;UDEC;Underground miningThe assessment of yielding rockbolt performance during rockbursts with actual seismic loading is essential for rock-burst supporting designs.In this paper,two types of yielding rockbolts(D-bolt and Roofex)and the fully resin-grouted rebar bolt are modeled via the"rockbolt"element in universal distinct element code(UDEC)after an exact calibration procedure.A two-dimensional(2D)model of a deep tunnel is built to fully evaluate the performance(e.g.,capacity of energy-absorption and control of rock damage)of yielding and traditional rockbolts based on the simulated rockbursts.The influence of different rockburst magnitudes is also studied.The results suggest that the D-bolt can effectively control and mitigate rockburst damage during a weak rockburst because of its high strength and deformation capacity.The Roofex is too"soft"or"smooth"to limit the movement of ejected rocks and restrain the large deformation,although it has an excellent deformation capacity.The resin-grouted rebar bolt can maintain a high axial force level during rockbursts but is easy to break during dynamic shocks,which fails to control rapid rock bulking or ejection.Three types of rockbolts cannot control the large deformation and mitigate rockburst damage effectively during violent rockbursts.The rockburst damage severity can be significantly reduced by additional support with cable bolts.This study highlights the effectiveness of numerical modeling methods in assessing the complex performance of yielding rockbolts during rockbursts,which can provide some references to improve and optimize the design of rock supporting in burst-prone grounds.展开更多
This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are re...This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to load-displacement graphs for every type of rockbolt. Conventional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate; a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement; and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.展开更多
This paper presents the principles of rock support for rockburst control and three rockburst support systems used in deep metal mines.Before the principles of rock support are presented,rock fracture related to strain...This paper presents the principles of rock support for rockburst control and three rockburst support systems used in deep metal mines.Before the principles of rock support are presented,rock fracture related to strain burst is first discussed with the help of photos taken on site,and the energy sources and transformations during bursting are illustrated through conceptual models.Surface parallel extension fracture usually occurs in the ejected and surrounding rocks in a strain burst event,while the ejected rock in a fault-slip rockburst is often already pre-fractured before the event.There must be excessive release energy available for rock ejection.The excessive release energy comes from both the ejected rock itself and the surrounding rock.To prevent rock ejection in a rockburst,the support system must be able to dissipate the excessive release energy.All support devices in a support system for rockburst control must be able to dissipate energy,be firmly linked,and be compatible in deformability.A support system for rockburst control comprises surface-retaining devices and yield rockbolts as well as yield cablebolts when needed.Laying mesh on the top of shotcrete liner is a good practice to enhance the surfaceretaining capacity of the support system.Energy-absorbing yield rockbolts dissipate energy either by stretching of the bolt shank or by sliding of the inner anchor in the borehole.Mesh,mesh strap and shotcrete are the surface-retaining devices widely used in the current rock support systems.The three types of rock support used for rockburst control at present are soft support system using Split Set bolts,hybrid support system using rebar and two-point anchored yield bolts,and entirely yieldable support system using strong yield bolts.展开更多
Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of su...Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of such ground behaviour types are difficult to predict and special design and construction measures must be taken to control them.Determining the most appropriate support system in such grounds is one of the major challenges for ground control engineers because there are many contributing factors to be considered,such as the rock mass parameters,the stress condition,the type and performance of the support systems,the condition of major geological structures and the size and geometry of the underground excavation.The main characteristics and support requirements of rockburst-prone and squeezing ground conditions are herein critically reviewed and characteristics of support functions are discussed.Different types of energy-absorbing rockbolts and other support elements applicable for ground support in burst-prone and squeezing grounds are introduced.Important differences in the choice and economics of ground support strategies in high-stress ground conditions between civil tunnels and mining excavations are discussed.Ground support benchmarking data and mitigation measures for mines and civil tunnels in burst-prone,squeezing and heavily swelling grounds conditions are briefly presented by some examples in practice.展开更多
High energyγ-ray can be used in many fields,such as nuclear resonant fluorescence,nuclear medicine imaging.One of the methods to generate high-energyγ-ray is nuclear resonant reaction.The 19F(p,αγ)16O reaction was...High energyγ-ray can be used in many fields,such as nuclear resonant fluorescence,nuclear medicine imaging.One of the methods to generate high-energyγ-ray is nuclear resonant reaction.The 19F(p,αγ)16O reaction was used to generate 6.13-MeVγ-ray in this work.The angular distribution of 6.13-MeVγ-ray was measured by six LaBr3 detectors.The thick-target yield curve of 6.13-MeVγ-ray had been measured.The maximum yield was determined to be(1.85±0.01)×10^-8γ/proton,which was measured by HPGe detector and LaBr3 detector.The absolute efficiency of all the detectors was calibrated using 60Co and 27Al(p,γ)^28Si reaction at Ep=992 keV.The cross section and total resonant width of the reaction were determined to be 95.1±1.0 mb(1 b=10^-24 cm^2)andΓCM=2.21±0.22 keV,respectively.展开更多
基金Support from China Scholarship Council(funding number:201808370185)is also gratefully acknowledged.
文摘Rockburst;Rockburst damage;Yielding rockbolt;Numerical modeling;UDEC;Underground miningThe assessment of yielding rockbolt performance during rockbursts with actual seismic loading is essential for rock-burst supporting designs.In this paper,two types of yielding rockbolts(D-bolt and Roofex)and the fully resin-grouted rebar bolt are modeled via the"rockbolt"element in universal distinct element code(UDEC)after an exact calibration procedure.A two-dimensional(2D)model of a deep tunnel is built to fully evaluate the performance(e.g.,capacity of energy-absorption and control of rock damage)of yielding and traditional rockbolts based on the simulated rockbursts.The influence of different rockburst magnitudes is also studied.The results suggest that the D-bolt can effectively control and mitigate rockburst damage during a weak rockburst because of its high strength and deformation capacity.The Roofex is too"soft"or"smooth"to limit the movement of ejected rocks and restrain the large deformation,although it has an excellent deformation capacity.The resin-grouted rebar bolt can maintain a high axial force level during rockbursts but is easy to break during dynamic shocks,which fails to control rapid rock bulking or ejection.Three types of rockbolts cannot control the large deformation and mitigate rockburst damage effectively during violent rockbursts.The rockburst damage severity can be significantly reduced by additional support with cable bolts.This study highlights the effectiveness of numerical modeling methods in assessing the complex performance of yielding rockbolts during rockbursts,which can provide some references to improve and optimize the design of rock supporting in burst-prone grounds.
文摘This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to load-displacement graphs for every type of rockbolt. Conventional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate; a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement; and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.
文摘This paper presents the principles of rock support for rockburst control and three rockburst support systems used in deep metal mines.Before the principles of rock support are presented,rock fracture related to strain burst is first discussed with the help of photos taken on site,and the energy sources and transformations during bursting are illustrated through conceptual models.Surface parallel extension fracture usually occurs in the ejected and surrounding rocks in a strain burst event,while the ejected rock in a fault-slip rockburst is often already pre-fractured before the event.There must be excessive release energy available for rock ejection.The excessive release energy comes from both the ejected rock itself and the surrounding rock.To prevent rock ejection in a rockburst,the support system must be able to dissipate the excessive release energy.All support devices in a support system for rockburst control must be able to dissipate energy,be firmly linked,and be compatible in deformability.A support system for rockburst control comprises surface-retaining devices and yield rockbolts as well as yield cablebolts when needed.Laying mesh on the top of shotcrete liner is a good practice to enhance the surfaceretaining capacity of the support system.Energy-absorbing yield rockbolts dissipate energy either by stretching of the bolt shank or by sliding of the inner anchor in the borehole.Mesh,mesh strap and shotcrete are the surface-retaining devices widely used in the current rock support systems.The three types of rock support used for rockburst control at present are soft support system using Split Set bolts,hybrid support system using rebar and two-point anchored yield bolts,and entirely yieldable support system using strong yield bolts.
文摘Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of such ground behaviour types are difficult to predict and special design and construction measures must be taken to control them.Determining the most appropriate support system in such grounds is one of the major challenges for ground control engineers because there are many contributing factors to be considered,such as the rock mass parameters,the stress condition,the type and performance of the support systems,the condition of major geological structures and the size and geometry of the underground excavation.The main characteristics and support requirements of rockburst-prone and squeezing ground conditions are herein critically reviewed and characteristics of support functions are discussed.Different types of energy-absorbing rockbolts and other support elements applicable for ground support in burst-prone and squeezing grounds are introduced.Important differences in the choice and economics of ground support strategies in high-stress ground conditions between civil tunnels and mining excavations are discussed.Ground support benchmarking data and mitigation measures for mines and civil tunnels in burst-prone,squeezing and heavily swelling grounds conditions are briefly presented by some examples in practice.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0400502)the National Natural Science Foundation of China(Grant Nos.11975316 and 11655003)the Continuous Basic Research Project of China(Grant No.WDJC-2019-02).
文摘High energyγ-ray can be used in many fields,such as nuclear resonant fluorescence,nuclear medicine imaging.One of the methods to generate high-energyγ-ray is nuclear resonant reaction.The 19F(p,αγ)16O reaction was used to generate 6.13-MeVγ-ray in this work.The angular distribution of 6.13-MeVγ-ray was measured by six LaBr3 detectors.The thick-target yield curve of 6.13-MeVγ-ray had been measured.The maximum yield was determined to be(1.85±0.01)×10^-8γ/proton,which was measured by HPGe detector and LaBr3 detector.The absolute efficiency of all the detectors was calibrated using 60Co and 27Al(p,γ)^28Si reaction at Ep=992 keV.The cross section and total resonant width of the reaction were determined to be 95.1±1.0 mb(1 b=10^-24 cm^2)andΓCM=2.21±0.22 keV,respectively.