Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com...Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.展开更多
Aluminum-silicon (Al-Si) alloy is very difficult to machine and diamond tools are considered by far the best choice for the machining of these materials. Experimental results in the machining of the Al-Si alloy with...Aluminum-silicon (Al-Si) alloy is very difficult to machine and diamond tools are considered by far the best choice for the machining of these materials. Experimental results in the machining of the Al-Si alloy with diamond coated inserts are presented. Considering the fact that high adhesive strength and fine surface morphology play an importance role in the applications of chemical vapor deposition (CVD) diamond films, multilayer technique combining the hot filament CVD (HFCVD) method is proposed, by which multilayer diamond-coating on silicon nitride inserts is obtained, microcrystalline diamond (MCD)/ nanocrystalline diamond (NCD) film. Also, the conventional monolayer NCD and MCD coated inserts are produced for comparison. The as-deposited diamond films are characterized by field emission scanning electron microscopy (FE-SEM) and Raman spectrum. All the CVD diamond coated inserts and uncoated insert endure the aluminum-silicon alloy turning to estimate their cutting performances. Among all the tested inserts, the MCD/NCD coated insert exhibits the perfect behavior as tool wear due to its very low flank wear and no diamond peeling.展开更多
Incorporating high-entropy alloys(HEAs) in composite microlattice structures yields superior mechanical performance and desirable functional properties compared to conventional metallic lattices. However, the modulus ...Incorporating high-entropy alloys(HEAs) in composite microlattice structures yields superior mechanical performance and desirable functional properties compared to conventional metallic lattices. However, the modulus mismatch and relatively poor adhesion between the soft polymer core and stiff metallic film coating often results in film delamination and brittle strut fracture at relatively low strain levels(typically below 10%). In this work, we demonstrate that optimizing the HEA film thickness of a CoCrNiFe-coated microlattice completely suppresses delamination,significantly delays the onset of strut fracture(~100% increase in compressive strain),and increases the specific strength by up to 50%. This work presents an efficient strategy to improve the properties of metal-composite mechanical metamaterials for structural applications.展开更多
The(CrNbTiAlV)N_(x)high-entropy nitride films were fabricated by adjusting nitrogen flow via magnetron sputtering.The microstructure,mechanical,electrochemical and tribocorrosion performances of the films were studied...The(CrNbTiAlV)N_(x)high-entropy nitride films were fabricated by adjusting nitrogen flow via magnetron sputtering.The microstructure,mechanical,electrochemical and tribocorrosion performances of the films were studied.The results show that the films transform from amorphous to nanocrystalline structure as nitrogen flow increased.The nanocrystalline films show super hardness(>40 GPa)and adhesion strength(>50 N).The amorphous film has a pretty anti-corrosion in static corrosion,while not in tribocorrosion condition.The film deposited at nitrogen flow of 38 sccm exhibits the optimal tribocorrosion performance in artificial seawater,with the highest open circuit potential(∼−0.1 V vs.Ag/AgCl),the lowest friction coefficient(∼0.162)and wear rate(∼7.48×10^(−7)mm^(3)N^(−1)m^(−1)).展开更多
Refractory high-entropy alloys(HEAs)possess many useful properties such as high strength and high-temperature stability.So far,most studies on refractory HEAs have been limited to a few well-known compositions and on ...Refractory high-entropy alloys(HEAs)possess many useful properties such as high strength and high-temperature stability.So far,most studies on refractory HEAs have been limited to a few well-known compositions and on their coarse-grain bulk forms.Here we fabricate nanocrystalline(TiZrHf)_(x)(NbTa)_(1−x)HEA thin films with a large range of compositions(x=0.07–0.90)by the direct current(DC)magnetron co-sputtering technique and measure their mechanical properties using the nanoindentation method.All the as-deposited HEA thin films show a solid-solution body-centered cubic(bcc)structure.As the compositional ratio(x)increases,the elastic modulus decreases from 153 to 123 GPa,following the trend of the rule of mixture.As x increases,the hardness first decreases from 6.5 GPa(x=0.07)to the lowest value(4.6 GPa,x=0.48)and then increases to the highest value(7.1 GPa,x=0.90),showing a concave trend.The change in hardness might be attributed to the combinational influence caused by the atomic size and modulus effects,as well as the texture effect.The authors also propose a few open questions for future studies on this and related HEA systems.展开更多
Plasma nitriding is successfully employed in treating AlxCoCrFeNi high-entropy alloys(HEAs)with finelydivided Al content(i.e.,x values in molar ratio,x=0.1-0.8)to develop wear-resistant structural materials.Nitridatio...Plasma nitriding is successfully employed in treating AlxCoCrFeNi high-entropy alloys(HEAs)with finelydivided Al content(i.e.,x values in molar ratio,x=0.1-0.8)to develop wear-resistant structural materials.Nitridation greatly removes the Al from the matrix that completely deplete the Ni-Al enriched phase,forming nanoscaled nitrides(AIN and CrN)precipitations near the surface.Nitriding promotes the hardness of present alloys with values widely ranging from 276 HV to 722 HV.Interestingly,the higher content the Al,the smaller thickness the nitrides layer,but the higher hardness due to the increased amount of hard nitrides phases and volume fraction of BCC phase.Significantly,plasma nitriding considerably improves the wear re sistance of AlxCoCrFeNi HEAs by 4-18 times.展开更多
基金Funded by the National Natural Science Foundation of China(No.52071252)the Key Research and Development Plan of Shaanxi Province Industrial Project(Nos.2021GY-208,2022GY-407,and 2021ZDLSF03-11)the China Postdoctoral Science Foundation(No.2020M683670XB)。
文摘Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.
基金Project(50975177)supported by the National Natural Science Foundation of China
文摘Aluminum-silicon (Al-Si) alloy is very difficult to machine and diamond tools are considered by far the best choice for the machining of these materials. Experimental results in the machining of the Al-Si alloy with diamond coated inserts are presented. Considering the fact that high adhesive strength and fine surface morphology play an importance role in the applications of chemical vapor deposition (CVD) diamond films, multilayer technique combining the hot filament CVD (HFCVD) method is proposed, by which multilayer diamond-coating on silicon nitride inserts is obtained, microcrystalline diamond (MCD)/ nanocrystalline diamond (NCD) film. Also, the conventional monolayer NCD and MCD coated inserts are produced for comparison. The as-deposited diamond films are characterized by field emission scanning electron microscopy (FE-SEM) and Raman spectrum. All the CVD diamond coated inserts and uncoated insert endure the aluminum-silicon alloy turning to estimate their cutting performances. Among all the tested inserts, the MCD/NCD coated insert exhibits the perfect behavior as tool wear due to its very low flank wear and no diamond peeling.
基金funding for this work from Shenzhen Science and Technology Innovation Committee under the Grant JCYJ20170413141157573Part of this project was supported by City University of Hong Kong (Project Nos. 9667164)。
文摘Incorporating high-entropy alloys(HEAs) in composite microlattice structures yields superior mechanical performance and desirable functional properties compared to conventional metallic lattices. However, the modulus mismatch and relatively poor adhesion between the soft polymer core and stiff metallic film coating often results in film delamination and brittle strut fracture at relatively low strain levels(typically below 10%). In this work, we demonstrate that optimizing the HEA film thickness of a CoCrNiFe-coated microlattice completely suppresses delamination,significantly delays the onset of strut fracture(~100% increase in compressive strain),and increases the specific strength by up to 50%. This work presents an efficient strategy to improve the properties of metal-composite mechanical metamaterials for structural applications.
基金the financial support of the National Natural Science Foundation of China(Nos.51835012 and 51975554)the National Key R&D Plan of China(No.2018YFB0703803)+1 种基金the program of“Science&Technology International Cooperation Demonstrative Base of Metal Surface Engineering along the Silk Road(No.2017D01003)”CAS“Light of West China”。
文摘The(CrNbTiAlV)N_(x)high-entropy nitride films were fabricated by adjusting nitrogen flow via magnetron sputtering.The microstructure,mechanical,electrochemical and tribocorrosion performances of the films were studied.The results show that the films transform from amorphous to nanocrystalline structure as nitrogen flow increased.The nanocrystalline films show super hardness(>40 GPa)and adhesion strength(>50 N).The amorphous film has a pretty anti-corrosion in static corrosion,while not in tribocorrosion condition.The film deposited at nitrogen flow of 38 sccm exhibits the optimal tribocorrosion performance in artificial seawater,with the highest open circuit potential(∼−0.1 V vs.Ag/AgCl),the lowest friction coefficient(∼0.162)and wear rate(∼7.48×10^(−7)mm^(3)N^(−1)m^(−1)).
基金support from the Discovery Grants Program(No.RGPIN-2018-05731)the Natural Sciences and Engineering Research Council of Canada(NSERC)+3 种基金New Frontiers in Research Fund-Exploration(No.NFRFE-2019-00603)Dean’s Spark Assistant Professorship in the Faculty of Applied Science&Engineering atUniversity of Toronto.M.J.R.H.acknowledges the financial support from Vanier Canada Graduate Scholarship(NSERC),Ontario Graduate Scholarship,and Queen Elizabeth II/Eleanor and Burnett Thall Graduate ScholarshipCanada Foundation for Innovation(CFI)-John R.Evans Leaders Fund(JELF)Project#38044.
文摘Refractory high-entropy alloys(HEAs)possess many useful properties such as high strength and high-temperature stability.So far,most studies on refractory HEAs have been limited to a few well-known compositions and on their coarse-grain bulk forms.Here we fabricate nanocrystalline(TiZrHf)_(x)(NbTa)_(1−x)HEA thin films with a large range of compositions(x=0.07–0.90)by the direct current(DC)magnetron co-sputtering technique and measure their mechanical properties using the nanoindentation method.All the as-deposited HEA thin films show a solid-solution body-centered cubic(bcc)structure.As the compositional ratio(x)increases,the elastic modulus decreases from 153 to 123 GPa,following the trend of the rule of mixture.As x increases,the hardness first decreases from 6.5 GPa(x=0.07)to the lowest value(4.6 GPa,x=0.48)and then increases to the highest value(7.1 GPa,x=0.90),showing a concave trend.The change in hardness might be attributed to the combinational influence caused by the atomic size and modulus effects,as well as the texture effect.The authors also propose a few open questions for future studies on this and related HEA systems.
基金supported financially by the opening project from the National Key Laboratory for Remanufacturing(No.61420050204)Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi(2019)the financial support from the China Scholarship Council(CSC)。
文摘Plasma nitriding is successfully employed in treating AlxCoCrFeNi high-entropy alloys(HEAs)with finelydivided Al content(i.e.,x values in molar ratio,x=0.1-0.8)to develop wear-resistant structural materials.Nitridation greatly removes the Al from the matrix that completely deplete the Ni-Al enriched phase,forming nanoscaled nitrides(AIN and CrN)precipitations near the surface.Nitriding promotes the hardness of present alloys with values widely ranging from 276 HV to 722 HV.Interestingly,the higher content the Al,the smaller thickness the nitrides layer,but the higher hardness due to the increased amount of hard nitrides phases and volume fraction of BCC phase.Significantly,plasma nitriding considerably improves the wear re sistance of AlxCoCrFeNi HEAs by 4-18 times.