期刊文献+
共找到42,875篇文章
< 1 2 250 >
每页显示 20 50 100
Porous high-entropy rare-earth phosphate(REPO_(4),RE=La,Sm,Eu,Ce,Pr and Gd)ceramics with excellent thermal insulation performance via pore structure tailoring
1
作者 Peixiong Zhang Enhui Wang +3 位作者 Jingjing Liu Tao Yang Hailong Wang Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1651-1658,共8页
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)... Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future. 展开更多
关键词 porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4) ceramics high-entropy strategy pore-forming agent method thermal insulation material thermal conductivity
下载PDF
Fast grain growth phenomenon in high-entropy ceramics:A case study in rare-earth hexaaluminates 被引量:1
2
作者 Lin ZHOU Ji-Xuan LIU +2 位作者 Tian-Zhe TU Yue WU Guo-Jun ZHANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第1期111-121,共11页
It is generally reported that the grain growth in high-entropy ceramics at high temperatures is relatively slower than that in the corresponding single-component ceramics owing to the so-called sluggish diffusion effe... It is generally reported that the grain growth in high-entropy ceramics at high temperatures is relatively slower than that in the corresponding single-component ceramics owing to the so-called sluggish diffusion effect.In this study,we report a fast grain growth phenomenon in the high-entropy ceramics(La_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2)Gd_(0.2))MgAl_(11)O_(19)(HEMA)prepared by a conventional solid-state reaction method.The results demonstrate that the grain sizes of the as-sintered HEMA ceramics are larger than those of the corresponding five single-component ceramics prepared by the same pressureless sintering process,and the grain growth rate of HEMA ceramics is obviously higher than those of the five single-component ceramics during the subsequent heat treatment.Such fast grain growth phenomenon indicates that the sluggish diffusion effect cannot dominate the grain growth behavior of the current high-entropy ceramics.The X-ray photoelectron spectroscopy(XPS)analysis reveals that there are more oxygen vacancies(OV)in the high-entropy ceramics than those in the single-component ceramics owing to the variable valance states of Eu ion.The high-temperature electrical conductivities of the HEMA ceramics support this analysis.It is considered that the high concentration of OV and its high mobility in HEMA ceramics contribute to the accelerated migration and diffusion of cations and consequently increase the grain growth rate.Based on this study,it is believed that multiple intrinsic factors for the high-entropy ceramic system will simultaneously determine the grain growth behavior at high temperatures. 展开更多
关键词 high-entropy ceramics rare-earth hexaaluminate fast grain growth electrical conductivity
原文传递
Grain-refining fabrication of nanocrystalline(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)high-entropy ceramics by ultra-high pressure sintering
3
作者 Zhangtian Wu Wei Ji +4 位作者 Jinyong Zhang Yanan Yuan Ji Zou Weimin Wang Zhengyi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第36期205-212,共8页
As an important A_(2)B_(2)O_(7)-type ceramic,(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)high-entropy pyrochlore pos-sesses promising properties such as high melting point,high chemical durability,and low... As an important A_(2)B_(2)O_(7)-type ceramic,(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)high-entropy pyrochlore pos-sesses promising properties such as high melting point,high chemical durability,and low thermal conductivity.However,the low sintering ability limits its application in thermal barrier coating and radioactive waste immobilization.It usually needs long-term high-temperature soaking to achieve full density,but with inevitable grain growth.In this work,dense and grain-refined nanocrystalline(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)ceramics were prepared with ultra-high pressure sintering(UHPS)method under 10 GPa at a low temperature of 800℃.The densification behavior,microstructure evo-lution,and properties of the UHPS-ed samples were then investigated.The grain size of as-prepared(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)ceramic was only 151 nm,which is 40%smaller than that of raw pow-der.In addition,it exhibited advantageous properties including both high hardness and aqueous durabil-ity.Plastic deformation under ultra-high pressure was believed as the dominant densification mechanism responsible for grain refinement and property improvement. 展开更多
关键词 high-entropy ceramics Ultra-high pressure sintering Grain refining NANOCRYSTALLINE Plastic deformation
原文传递
Dielectric and ferroelectric characteristics of Ba(Ti_(0.25)Zr_(0.25)Hf_(0.25)Sn_(0.25))O_(3)high-entropy ceramics
4
作者 Rui Hu Mi Bu Hang Chen +1 位作者 Xiao Li Zhu Xiang Ming Chen 《Journal of Materiomics》 SCIE CSCD 2023年第4期634-641,共8页
Ba(Ti_(0.25)Zr_(0.25)Hf_(0.25)Sn_(0.25))O_(3)high-entropy ceramics were prepared by a standard solid state reaction process,and the dielectric and ferroelectric characteristics were investigated together with the stru... Ba(Ti_(0.25)Zr_(0.25)Hf_(0.25)Sn_(0.25))O_(3)high-entropy ceramics were prepared by a standard solid state reaction process,and the dielectric and ferroelectric characteristics were investigated together with the structures.Both X-ray diffraction(XRD)and energy dispersive spectroscopy(EDS)analysis demonstrated a single-phase perovskite structure in the present ceramics.A broad dielectric peak with strong frequency dispersion feature was determined,which indicated the typical relaxor nature originating from the nanoscale ferroelectric domain structures.These resulted from the structural distortion and chemical disorder due to high-entropy,where the long-range order of ferroelectric domains was destroyed.The homogeneous microstructure led to the reduced leakage current density and significantly improved dielectric strength,which was desired for the practical applications.Compared with the similar systems of Ba(Ti_(1-x)Zr_(x))O_(3)&Ba(Ti_(1-x)Sn_(x))O_(3),the present high-entropy ceramics indicated better relaxor ferroelectric characteristics. 展开更多
关键词 high-entropy ceramic Microstructure PEROVSKITE Relaxor ferroelectric
原文传递
Clay Materials for Ceramics Application from N’Djamena in the Chad Republic: Mineralogical, Physicochemical and Microstructural Characterization
5
作者 Ndjolba Madjihingam Djoda Pagore +3 位作者 Jacques Richard Mache Bebbata Warabi Bertin Pagna Kagonbe Patrick Mountapmbeme Kouotou 《Journal of Materials Science and Chemical Engineering》 2024年第2期31-48,共18页
Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SE... Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SEM. In addition, TGA/DSC were performed to control decomposition/mass loss and show phase transitions respectively of CMs. Geochemical analysis by XRF reveals the following minerals composition: SiO<sub>2</sub> (~57% - 66%), Al<sub>2</sub>O<sub>3 </sub>(~13% - 15%), Fe<sub>2</sub>O<sub>3</sub> (~6% - 10%), TiO<sub>2</sub> (~1% - 2%) were the predominant oxides with a reduced proportion in C1, and (~7%) of fluxing agents (K<sub>2</sub>O, CaO, Na<sub>2</sub>O). Negligible and trace of MgO (~1%) and P<sub>2</sub>O<sub>5</sub> was noted. The mineralogical composition by XRD shows that, C1, C2 and C3 display close mineralogy with: Quartz (~50%), feldspar (~20%) as non-clay minerals, whereas clays minerals were mostly kaolinite (~15%), illite (~5%) and smectite (~10%). FTIR analysis exhibits almost seemingly similar absorption bands characteristic of hydroxyls elongation, OH valence vibration of Kaolinite and stretching vibration of some Metal-Oxygen bond. SEM micrographs of the samples exhibit microstructureformed by inter-aggregates particles with porous cavities. TGA/DSCconfirm the existence of quartz (570˚C to 870˚C), carbonates (600˚C - 760˚C), kaolinite (569˚C - 988˚C), illite (566˚C - 966˚C), MgO (410˚C - 720˚C) and smectite (650˚C - 900˚C). The overall characterization indicates that, these clayey soils exhibit good properties for ceramic application. 展开更多
关键词 Clay Soils Characterization MINERALOGY Physicochemical Properties ceramic Application
下载PDF
Study on Acoustic Emission Characteristics of Deformation Damage Process of Zirconia Ceramics
6
作者 Qingchuan Fu Yushu Lai 《Journal of Materials Science and Chemical Engineering》 2024年第2期61-72,共12页
Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited r... Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals. 展开更多
关键词 Zirconia ceramics Acoustic Emission Monitoring Crack Damage
下载PDF
Reduced He ion irradiation damage in ZrC-based high-entropy ceramics
7
作者 Xiao-Ting Xin Weichao Bao +7 位作者 Xin-Gang Wang Xiao-Jie Guo Ying Lu Chenxi Zhu Ji-Xuan Liu Qiang Li Fangfang Xu Guo-Jun Zhang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第5期916-929,共14页
Excellent irradiation resistance is the basic property of nuclear materials to keep nuclear safety.The high-entropy design has great potential to improve the irradiation resistance of the nuclear materials,which has b... Excellent irradiation resistance is the basic property of nuclear materials to keep nuclear safety.The high-entropy design has great potential to improve the irradiation resistance of the nuclear materials,which has been proven in alloys.However,whether or not high entropy can also improve the irradiation resistance of ceramics,especially the mechanism therein still needs to be uncovered.In this work,the irradiation and helium(He)behaviors of zirconium carbide(ZrC)-based high-entropy ceramics(HECs),i.e.,(Zr_(0.2)Ti_(0.2)Nb_(0.2)Ta_(0.2)W_(0.2))C,were investigated and compared with those of ZrC under 540 keV He ion irradiation with a dose of 1×10^(17) cm^(−2) at room temperature and subsequent annealing.Both ZrC and(Zr_(0.2)Ti_(0.2)Nb_(0.2)Ta_(0.2)W_(0.2))C maintain lattice integrity after irradiation,while the irradiation-induced lattice expansion is smaller in(Zr_(0.2)Ti_(0.2)Nb_(0.2)Ta_(0.2)W_(0.2))C(0.78%)with highly thermodynamic stability than that in ZrC(0.91%).After annealing at 800℃,ZrC exhibits the residual _(0.2)0%lattice expansion,while(Zr_(0.2)Ti_(0.2)Nb_(0.2)Ta_(0.2)W_(0.2))C shows only 0.10%.Full recovery of the lattice parameter(a)is achieved for both ceramics after annealing at 1500℃.In addition,the high entropy in the meantime brings about the favorable structural evolution phenomena including smaller He bubbles that are evenly distributed without abnormal coarsening or aggregation,segregation,and shorter and sparser dislocation.The excellent irradiation resistance is related to the high-entropy-induced phase stability,sluggish diffusion of defects,and stress dispersion along with the production of vacancies by valence compensation.The present study indicates a high potential of high-entropy carbides in irradiation resistance applications. 展开更多
关键词 high-entropy carbides zirconium carbide(ZrC) irradiation damage dislocations helium(He)bubbles
原文传递
High-entropy ceramics:Present status,challenges,and a look forward 被引量:32
8
作者 Huimin XIANG Yan XING +11 位作者 Fu-zhi DAI Hongjie WANG Lei SU Lei MIAO Guojun ZHANG Yiguang WANG Xiwei QI Lei YAO Hailong WANG Biao ZHAO Jianqiang LI Yanchun ZHOU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第3期385-441,共57页
High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements.Although in the infant stage,the emerging ... High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements.Although in the infant stage,the emerging of this new family of materials has brought new opportunities for material design and property tailoring.Distinct from metals,the diversity in crystal structure and electronic structure of ceramics provides huge space for properties tuning through band structure engineering and phonon engineering.Aside from strengthening,hardening,and low thermal conductivity that have already been found in high-entropy alloys,new properties like colossal dielectric constant,super ionic conductivity,severe anisotropic thermal expansion coefficient,strong electromagnetic wave absorption,etc.,have been discovered in HECs.As a response to the rapid development in this nascent field,this article gives a comprehensive review on the structure features,theoretical methods for stability and property prediction,processing routes,novel properties,and prospective applications of HECs.The challenges on processing,characterization,and property predictions are also emphasized.Finally,future directions for new material exploration,novel processing,fundamental understanding,in-depth characterization,and database assessments are given. 展开更多
关键词 high-entropy ceramics(HECs) PROCESSING structure properties applications
原文传递
Influence of order-disorder transition on the mechanical andthermophysical properties of ABOhigh-entropy ceramicsInfluence of order-disorder transition on the mechanical and thermophysical properties of A_(2)B_(2)O_(7)high-entropy ceramics 1 被引量:1
9
作者 Jiatong ZHU Mingyue WEI +6 位作者 Jie XU Runwu YANG Xuanyu MENG Ping ZHANG Jinlong YANG Guangzhong LI Feng GAO 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第8期1222-1234,共13页
The order–disorder transition(ODT)of A_(2)B_(2)O_(7)compounds obtained enormous attention owing to the potential application for thermal barrier coating(TBC)design.In this work,the influence of ODT on the mechanical ... The order–disorder transition(ODT)of A_(2)B_(2)O_(7)compounds obtained enormous attention owing to the potential application for thermal barrier coating(TBC)design.In this work,the influence of ODT on the mechanical and thermophysical properties of dual-phase A_(2)B_(2)O_(7)high-entropy ceramics was investigated by substituting Ce^(4+)and Hf^(4+)with different ionic radii on B-sites(Zr^(4+)).The X-ray diffraction(XRD),Raman,and transmission electron microscopy(TEM)results show that rA3+/rB^(4+)=1.47 is the critical value of ODT phase boundary with different doping B-site ion contents,and the energy dispersive spectroscopy(EDS)results further indicate the uniform distribution of elements.Interestingly,owing to the high intrinsic disorder derived from high-entropy effect,the A_(2)B_(2)O_(7)high-entropy ceramics exhibit unreduced modulus(E0≈230 GPa)and enhanced mechanical properties(HV≈10 GPa,KIC≈2.3 MPa·m^(0.5)).A_(2)B_(2)O_(7)high-entropy ceramics exhibit excellent thermal stability with relatively high thermal expansion coefficients(TECs)(Hf_(0.25),11.20×10-6 K-1,1000℃).Moreover,the matching calculation implied that the ODT further enhances the phonon scattering coefficient,leading to a relatively lower thermal conductivity of(La_(0.25)Eu_(0.25)Gd_(0.25)Yb_(0.25))2(Zr_(0.85)Ce_(0.15))_(2)O_(7)(1.48–1.51 W/(m·K),100–500℃)compared with other components.This present work provides a novel composition design principle for high-entropy ceramics,as well as a material selection rule for high-temperature insulation applications. 展开更多
关键词 high-entropy ceramics A_(2)B_(2)O_(7) order-disorder transition(ODT) mechanical properties thermal conductivity
原文传递
Single-phase formation mechanism and dielectric properties of sol-gel-derived Ba(Ti_(0.2)Zr_(0.2)Sn_(0.2)Hf_(0.2)Ce_(0.2))O_(3) high-entropy ceramics
10
作者 Jia Liu Cuiying Ma +5 位作者 Lianli Wang Ke Ren Hongpei Ran Danni Feng Huiling Du Yiguang Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第35期103-111,共9页
Single-phase Ba(Ti_(0.2)Zr_(0.2)Sn_(0.2)Hf_(0.2)Ce_(0.2))O_(3)(BTZSHC) high-entropy ceramics(HECs) with the perovskite structure were successfully prepared via the sol-gel method.The results reveal that the as-prepare... Single-phase Ba(Ti_(0.2)Zr_(0.2)Sn_(0.2)Hf_(0.2)Ce_(0.2))O_(3)(BTZSHC) high-entropy ceramics(HECs) with the perovskite structure were successfully prepared via the sol-gel method.The results reveal that the as-prepared ceramics exhibit a single cubic phase belonging to the Pm3 m space group.The high entropy is the driving force of the formation of single-phase ceramics.A larger entropy(ΔS_(mix)) and a negative enthalpy(ΔH_(mix)) are conducive to the formation of single-phase compounds.Herein,ΔS_(mix)=0.323 R mole-1andΔH_(mix)=43.88 kJ/mol.The sluggish-diffusion effect ensures the thermal stability of high-entropy systems.Dielectric measurements reveal that the as-prepared BTZSHC high-entropy ceramics are relaxor ferroelectrics,and the degree of relaxor(γ) is 1.9.The relaxor behavior of the as-prepared ceramics can be ascribed to the relaxation and thermal evolution of their polar units(PUs).The findings of this work provide a theoretical basis and technical support for the preparation of single-phase high-entropy ceramics. 展开更多
关键词 high-entropy ceramics Single-phase formation mechanism Perovskite structure Sol-gel method Dielectric properties
原文传递
Effects of ZnO,FeO and Fe_(2)O_(3)on the spinel formation,microstructure and physicochemical properties of augite-based glass ceramics 被引量:1
11
作者 Shuai Zhang Yanling Zhang Shaowen Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1207-1216,共10页
Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The resu... Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The results showed that oxides resulted in numerous preliminary spinels in the glass matrix.FeO,ZnO,and Fe_(2)O_(3)influenced the formation of spinel,while FeO simplified the glass network.FeO and ZnO promoted bulk crystallisation of the parent glass.After adding oxides,the grains of augite phase were refined,and the relative quantities of augite crystal planes were also influenced.All samples displayed good mechanical properties and chemical stability.The 2wt%ZnO-doping sample displayed the maximum flexural strength(170.3 MPa).Chromium leaching amount values of all the samples were less than the national standard(1.5 mg/L),confirming the safety of the materials.In conclusion,an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics. 展开更多
关键词 SPINEL network structure thermodynamics MICROSTRUCTURE glass ceramics
下载PDF
Minimizing Carbon Content with Three-in-One Functionalized Nano Conductive Ceramics:Toward More Practical and Safer S Cathodes of Li-S Cells 被引量:1
12
作者 Ning Li Chang Sun +5 位作者 Jianhui Zhu Shun Li Yanlong Wang Maowen Xu Changming Li Jian Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期31-39,共9页
Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,c... Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes. 展开更多
关键词 flame retardance Li-S cells minimized carbon ratio nano conductive ceramics three-in-one functionality
下载PDF
Discovery of high-entropy ceramics via machine learning 被引量:6
13
作者 Kevin Kaufmann Daniel Maryanovsky +7 位作者 William M.Mellor Chaoyi Zhu Alexander S.Rosengarten Tyler J.Harrington Corey Oses Cormac Toher Stefano Curtarolo Kenneth S.Vecchio 《npj Computational Materials》 SCIE EI CSCD 2020年第1期1323-1331,共9页
Although high-entropy materials are attracting considerable interest due to a combination of useful properties and promising applications,predicting their formation remains a hindrance for rational discovery of new sy... Although high-entropy materials are attracting considerable interest due to a combination of useful properties and promising applications,predicting their formation remains a hindrance for rational discovery of new systems.Experimental approaches are based on physical intuition and/or expensive trial and error strategies.Most computational methods rely on the availability of sufficient experimental data and computational power.Machine learning(ML)applied to materials science can accelerate development and reduce costs.In this study,we propose an ML method,leveraging thermodynamic and compositional attributes of a given material for predicting the synthesizability(i.e.,entropy-forming ability)of disordered metal carbides. 展开更多
关键词 ceramics ENTROPY attracting
原文传递
Physic, Chemical and Mineralogical Characterizations of Clays Used in the Making of Traditional Ceramics in the City of Katiola, C ôte d’Ivoire
14
作者 Isabelle Linda He Grah Patrick Atheba +3 位作者 N’guadi Blaise Allou Patrick Drogui My Ali El Khakani Gildas Komenan Gbassi 《Journal of Minerals and Materials Characterization and Engineering》 2023年第4期81-91,共11页
In C ?te d’Ivoire, traditional ceramics are widely used in the form of pottery. The latter is used to store food, water and cereals. Analyzes (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ... In C ?te d’Ivoire, traditional ceramics are widely used in the form of pottery. The latter is used to store food, water and cereals. Analyzes (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductive plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM) and analysis thermal gravimetric (ATG)) were carried out to determine the morphology, the chemical, physical and pedological constituents of these raw materials. It appears from this study that the clays used in the Mangoro pottery of Katiola contain silica SiO<sub>2</sub>, alumina Al<sub>2</sub>O<sub>3</sub> and iron oxide Fe<sub>2</sub>O<sub>3</sub> as well as kaolinite, muscovite, smectite and quartz. 展开更多
关键词 ceramics Characterization Clays KAOLINITE MUSCOVITE SMECTITE QUARTZ
下载PDF
Improved microwave dielectric properties of MgAl_(2)O_(4)spinel ceramics through(Li_(1/3)Ti_(2/3))^(3+)doping
15
作者 李潇 杨习志 +7 位作者 赖元明 张芹 李宝阳 戚聪 殷俊 王凡硕 巫崇胜 苏桦 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期668-673,共6页
A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,micros... A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,microstructures,and microwave dielectric properties were investigated.The results of x-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that a single phase of MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with a spinel structure was obtained at x≤0.12,whereas the second phase of MgTi_(2)O_(5)appeared when x>0.12.The cell parameters were obtained by XRD refinement.As the x values increased,the unit cell volume kept expanding.This phenomenon could be attributed to the partial substitution of(Li_(1/3)Ti_(2/3))^(3+)for Al^(3+).Results showed that(Li_(1/3)Ti_(2/3))^(3+)doping into MgAl_(2)O_(4)spinel ceramics effectively reduced the sintering temperature and improved the quality factor(Q_f)values.Good microwave dielectric properties were achieved for a sample at x=0.20 sintering at 1500℃in air for 4 h:dielectric constantε_(r)=8.78,temperature coefficient of resonant frequencyτ_(f)=-85 ppm/℃,and Q_(f)=62300 GHz.The Q_(f)value of the x=0.20 sample was about 2 times higher than that of pure MgAl_(2)O_(4)ceramics(31600 GHz).Thus,MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with excellent microwave dielectric properties can be applied to 5G communications. 展开更多
关键词 microwave dielectric ceramics MgAl_(2)O_(4)ceramic co-substitution MgTi_(2)O_(5) solid solubility limit
下载PDF
Research of Microstructure,Phase,and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics
16
作者 Liang Yu Yuan Liu +3 位作者 Xiuling Cao Yulong Yan Chen Zhang Yanli Jiang 《Journal of Renewable Materials》 EI 2023年第7期3057-3072,共16页
In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the... In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the main component in the manufacturing of ceramics.The basic phases of the ceramics were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)without the addition of kaolin.The diffraction peaks of MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)kept decreasing while those of Al_(2)O_(3)kept increasing with an increase in temperature.In addition,the increase in temperature promoted the growth of the grains.The grains were uniform in size and regular in distribution,with a shrinkage of 2.2%,porosity of 72.5%,bulk density of 1.076 g/cm^(3),and compressive strength of 1.12 MPa.When the sintering temperature was 1450°C,the basic phases of the ceramic after the addition of kaolin were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2).With the increase of kaolin,the diffraction peaks of NaAl_(11)O_(17)and SiO_(2)decreased until they disappeared,while the diffraction peaks of Al_(2)O_(3)increased significantly.When kaolin was added at 30 wt.%,the ceramics obtained had shrinkage of 18%,a porosity of 47.26%,a bulk density of 1.965 g/cm^(3),and compressive strength of 31.9 MPa.Cracks existed inside the ceramics without the addition of kaolin,while the addition of kaolin significantly changed this defect.It is shown that SAD can obtain porous ceramics with good properties at a sintering temperature of 1450°C and a kaolin addition of 30 wt.%. 展开更多
关键词 Secondary aluminum dross porous ceramics microstrure PHASE mechanical properties
下载PDF
Preparation and Thermal Shock Resistance of Mullite Ceramics for High Temperature Solar Thermal Storage
17
作者 吴建锋 章真宇 +3 位作者 XU Xiaohong MA Sitong LI Peixian SHI Xingxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期743-752,共10页
Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testin... Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testing techniques.The experimental results indicate that sample A3(bauxite/kaolin ratio of 5:5)sintered at 1620℃has the optimum comprehensive properties,with bulk density of 2.83 g·cm^(-3)and bending strength of 155.44 MPa.After 30 thermal shocks(1000℃-room temperature,air cooling),the bending strength of sample A3 increases to 166.15 MPa with an enhancement rate of 6.89%,the corresponding thermal conductivity and specific heat capacity are 3.54 W·(m·K)^(-1)and 1.39 kJ·(kg·K)^(-1)at 800℃,and the thermal storage density is 1096 kJ·kg^(-1)(25-800 mullite ceramics;sintering properties;high-temperature thermal storage;thermal shock resistance).Mullite forms a dense and continuous interlaced network microstructure,which endows the samples high thermal storage density and high bending strength,but the decrease of bauxite/kaolin ratio leads to the decrease of mullite content,which reduces the properties of the samples. 展开更多
关键词 mullite ceramics sintering properties high-temperature thermal storage thermal shock resistance
下载PDF
Reactive sintering of dual-phase high-entropy ceramics with superior mechanical properties 被引量:1
18
作者 Sijia Huo Lei Chen +4 位作者 Xinrui Liu Qingyi Kong Yujin Wang Hui Gu Yu Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第34期223-227,共5页
1. Introduction The requirements for the performance of materials have become increasingly stringent in recent years, with the rapid development of aerospace, machinery, metallurgy, nuclear energy,chemical industry, a... 1. Introduction The requirements for the performance of materials have become increasingly stringent in recent years, with the rapid development of aerospace, machinery, metallurgy, nuclear energy,chemical industry, and military industry [1,2], and traditional single-phase materials are gradually revealing disadvantages due to the contradiction between demanding service environments and simple material design. 展开更多
关键词 ceramics phase CONTRADICTION
原文传递
Effect of TiO_(2)Addition on Properties of Al_(2)O_(3)Ceramics Prepared by Digital Light Printing(DL.P)
19
作者 WANG Rui YANG Daoyuan +2 位作者 PAN Yarui YUAN Huiyu CUI Junyan 《China's Refractories》 CAS 2023年第1期35-39,共5页
Ceramic slurry of 78 mass%solid loading was prepared using photosensitive acrylic resin and dispersant SP-710 as the liquid phase,Al_(2)O_(3) powder(d50=2.38μm)and TiO_(2) powder additive as the solid phase.Alumina c... Ceramic slurry of 78 mass%solid loading was prepared using photosensitive acrylic resin and dispersant SP-710 as the liquid phase,Al_(2)O_(3) powder(d50=2.38μm)and TiO_(2) powder additive as the solid phase.Alumina ceramics were prepared by DLP,sintering for 4 h at 1450,1500,1550 or 1600℃,respectively.The effects of the TiO_(2) addition(0,1%,2%,3%and 5%,by mass)on the properties of the ceramics were studied.The results show that the addition of TiO_(2) can improve the sintering of Al_(2)O_(3) ceramics,significantly improve the densification,and reduce the sintering temperature.With the optimum TiO_(2) addition of 3%and the optimum sintering temperature of 1600℃,the obtained Al_(2)O_(3) ceramics have shrinkage of 15.7%,15.8%and 23.8%at the x axis,the y axis,and the z axis,respectively,the porosity of 2.4%,the bulk density of 3.74 g·cm-3 and the three-point bending strength of 251.1 MPa.Compared with the undoped alumina ceramics,the doped alumina ceramic has increased bulk density by 0.56 g·cm-3,decreased apparent porosity from 20.2%to 2.4%,and the three-point bending strength increases by 2.5 times.Therefore,the density and the strength of DLP prepared ceramics can be improved effectively by adding an appropriate amount of TiO_(2),and the performance of the DLP prepared ceramics is close to that of the pressed samples.Thus,it is hopeful to apply DLP in refractories field. 展开更多
关键词 digital light printing alumina ceramics STRENGTH bulk density sintering aid
下载PDF
The Coupled Thermo-Chemo-Mechanical Peridynamics for ZrB_(2) Ceramics Ablation Behavior
20
作者 Yuanzhe Li Qiwen Liu +1 位作者 Lisheng Liu Hai Mei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期417-439,共23页
The ablation of ultra-high-temperature ceramics(UTHCs)is a complex physicochemical process including mechanical behavior,temperature effect,and chemical reactions.In order to realize the structural optimization and fu... The ablation of ultra-high-temperature ceramics(UTHCs)is a complex physicochemical process including mechanical behavior,temperature effect,and chemical reactions.In order to realize the structural optimization and functional design of ultra-high temperature ceramics,a coupled thermo-chemo-mechanical bond-based peridynamics(PD)model is proposed based on the ZrB_(2) ceramics oxidation kinetics model and coupled thermomechanical bond-based peridynamics.Compared with the traditional coupled thermo-mechanical model,the proposedmodel considers the influenceof chemical reactionprocessonthe ablation resistanceof ceramicmaterials.In order to verify the reliability of the proposed model,the thermo-mechanical coupling model,damage model and oxidation kinetic model are established respectively to investigate the applicability of the proposedmodel proposed in dealing with thermo-mechanical coupling,crack propagation,and chemical reaction,and the results show that the model is reliable.Finally,the coupled thermo-mechanical model and coupled thermo-chemo-mechanical model are used to simulate the crack propagation process of the plate under the thermal shock load,and the results show that the oxide layer plays a good role in preventing heat transfer and protecting the internal materials.Based on the PD fully coupled thermo-mechanical model,this paper innovatively introduces the oxidation kinetic model to analyze the influence of parameter changes caused by oxide layer growth and chemical growth strain on the thermal protection ability of ceramics.The proposed model provides an effective simulation technology for the structural design of UTHCs. 展开更多
关键词 ZrB_(2)ceramics ablation coupled thermo-chemo-mechanic peridynamics model oxide layer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部