期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:5
1
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis ELECTROCATALYSTS
下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
2
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan 《Nano Materials Science》 EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 Transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials SUPERCAPACITOR
下载PDF
A general synthetic strategy for N, P co-doped graphene supported metal-rich noble metal phosphides for hydrogen generation
3
作者 Jingwen Ma Xiang Li +6 位作者 Guangyu Lei Jun Wang Juan Wang Jian Liu Ming Ke Yang Li Chunwen Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期152-162,共11页
The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process o... The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts. 展开更多
关键词 Noble metal phosphides ELECTROCATALYST Deoxyribonucleic acid Hydrogen evolution pH universal
下载PDF
Atomic orbitals modulated dual functional bimetallic phosphides derived from MOF on MOF structure for boosting high efficient overall water splitting
4
作者 Bohan An Weilong Liu +3 位作者 Jipeng Dong Ning Li Yangqin Gao Lei Ge 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期113-125,共13页
The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performan... The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity. 展开更多
关键词 Transition metal phosphides MOF on MOF Atomic orbital theory Density functional theory calculation
下载PDF
Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction 被引量:24
5
作者 Lishan Peng Syed Shoaib Ahmad Shah Zidong Wei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1575-1593,共19页
Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increa... Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts. 展开更多
关键词 Oxygen evolution reaction ELECTROCATALYSIS metal phosphide metal sulfide In situ oxidation Active component
下载PDF
Recent advances of metal phosphides for Li-S chemistry 被引量:7
6
作者 Songlin Yu Wenlong Cai +2 位作者 Le Chen Lixian Song Yingze Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期533-548,共16页
Li-S batteries have been considered as one of advanced next-generation energy storage systems owing to their remarkable theoretical capacity(1672 m Ah g^(-1))and high energy density(2600 Wh kg^(-1)).However,critical i... Li-S batteries have been considered as one of advanced next-generation energy storage systems owing to their remarkable theoretical capacity(1672 m Ah g^(-1))and high energy density(2600 Wh kg^(-1)).However,critical issues,mainly pertaining to lithium polysulfide shuttle and slow sulfur reaction kinetics,have posed a fatal threat to the electrochemical performances of Li-S batteries.The situation is even worse for high sulfur-loaded and flexible cathodes,which are the essential components for practical Li-S batteries.In response,the use of metal compounds as electrocatalysts in Li-S systems have been confirmed as an effective strategy to date.Particularly,recent years have witnessed many progresses in phosphidesoptimized Li-S chemistry.This has been motivated by the superior electron conductivity and high electrocatalytic activity of phosphides.In this tutorial review,we offer a systematic summary of active metal phosphides as promoters for Li-S chemistry,aiming at helping to understanding the working mechanism of phosphide electrocatalysts and guiding the construction of advanced Li-S batteries. 展开更多
关键词 metal phosphides Li-S chemistry Polysulfide regulation ELECTROCATALYSIS
下载PDF
Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides 被引量:9
7
作者 Wenli Yu Yuxiao Gao +3 位作者 Zhi Chen Ying Zhao Zexing Wu Lei Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第11期1876-1902,共27页
Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via el... Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting.The hydrogen evolution reaction(HER,a half-reaction of water splitting)plays a pivotal role in decreasing the price and increasing the catalytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes.Herein,we summarize the recent advances in the development of metal phosphides as HER electrocatalysts,focus on their synthesis(post-treatment,in situ generation,and electrodeposition methods)and the enhancement of their electrocatalytic activity(via elemental doping,interface and vacancy engineering,construction of specific supports and nanostructures,and the design of bior polymetallic phosphides),and highlight the crucial issues and challenges of future development. 展开更多
关键词 metal phosphides Electrocatalytic reaction Hydrogen evolution reaction Synthesis strategies Hydrogen energy
下载PDF
Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting 被引量:6
8
作者 Li-Ming Cao Jia Zhang +2 位作者 Li-Wen Ding Zi-Yi Du Chun-Ting He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期494-520,共27页
It is critical to synthesize high-efficiency electrocatalysts to boost the performance of water splitting to meet the requirements of industrial applications. Metal-organic frameworks(MOFs) can function as ideal molec... It is critical to synthesize high-efficiency electrocatalysts to boost the performance of water splitting to meet the requirements of industrial applications. Metal-organic frameworks(MOFs) can function as ideal molecular platforms for the design of highly reactive transition metal phosphides(TMPs), a kind of candidates for high-efficiently electrocatalytic water splitting. The intrinsic activity of the electrocatalysts can be greatly improved via modulating the electronic structure of the catalytic center through the MOF precursors/templates. Moreover, the carbon layer converted in-situ by the organic ligands can not only protect the TMPs from being degraded in the harsh electrochemical environments, but also avoid agglomeration of the catalysts, thereby promoting their activities and stabilities. Furthermore,heteroatom-containing ligands can incorporate N, S or P, etc. atoms into the carbon matrixes after conversion, regulating the coordination microenvironments of the active centers as well as their electronic structures. In this review, we first summarized the latest developments in MOF-derived TMPs by the unique advantages in metal, organic ligand, and morphology regulations for electrocatalytic water splitting. Secondly, we concluded the critical scientific issues currently facing for designing state-of-the-art TMP-based electrocatalysts. Finally, we presented an outlook on this research area, encompassing electrocatalyst construction, catalytic mechanism research, etc. 展开更多
关键词 metal-organic framework Transition metal phosphide Water splitting ELECTROCATALYST Electronic structure
下载PDF
Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries 被引量:3
9
作者 Rui Gao Zhenyu Wang +2 位作者 Sheng Liu Guangjie Shao Xueping Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期990-1002,共13页
Lithium−sulfur batteries are one of the most competitive high-energy batteries due to their high theoretical energy density of _(2)600 W·h·kg^(−1).However,their commercialization is limited by poor cycle sta... Lithium−sulfur batteries are one of the most competitive high-energy batteries due to their high theoretical energy density of _(2)600 W·h·kg^(−1).However,their commercialization is limited by poor cycle stability mainly due to the low intrinsic electrical conductivity of sulfur and its discharged products(Li_(2)S_(2)/Li_(2)S),the sluggish reaction kinetics of sulfur cathode,and the“shuttle effect”of soluble intermediate lithi-um polysulfides in ether-based electrolyte.To address these challenges,catalytic hosts have recently been introduced in sulfur cathodes to en-hance the conversion of soluble polysulfides to the final solid products and thus prevent the dissolution and loss of active-sulfur material.In this review,we summarize the recent progress on the use of metal phosphides and borides of different dimensions as the catalytic host of sulfur cathodes and demonstrate the catalytic conversion mechanism of sulfur cathodes with the help of metal phosphides and borides for high-en-ergy and long-life lithium-sulfur batteries.Finally,future outlooks are proposed on developing advanced catalytic host materials to improve battery performance. 展开更多
关键词 lithium–sulfur batteries sulfur cathode catalytic host metal phosphides metal borides
下载PDF
Multicomponent transition metal phosphide for oxygen evolution 被引量:4
10
作者 Lihua Liu Ning Li +2 位作者 Jingrui Han Kaili Yao Hongyan Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第3期503-512,共10页
Transition metal phosphides(TMPs)have exhibited decent performance in an oxygen evolution reaction(OER),which is a kinetic bottleneck in many energy storages and conversion systems.Most reported catalysts are composed... Transition metal phosphides(TMPs)have exhibited decent performance in an oxygen evolution reaction(OER),which is a kinetic bottleneck in many energy storages and conversion systems.Most reported catalysts are composed of three or fewer metallic components.The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and,more importantly,comprehending the component-activity correlation.Through hydrothermal growth and subsequent phosphor-ization,we reported a facile strategy for combining TMPs with tunable elemental compositions(Ni,Fe,Mn,Co,Cu)on a two-dimensional ti-tanium carbide(MXene)flake.The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements.They ex-hibit high electrical conductivity and strong interfacial interaction,resulting in an accelerated reaction kinetics and long-term stability.The res-ults of different component catalysts’OER performance show that NiFeMnCoP/MXene is the most active catalyst,with a low overpotential of 240 mV at 10 mA·cm−2,a small Tafel slope of 41.43 mV·dec−1,and a robust long-term electrochemical stability.According to the electrocata-lytic mechanism investigation,the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-ele-mental composition.Our work,therefore,provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design. 展开更多
关键词 multicomponent transition metal phosphides electrocatalytic oxygen evolution reaction MXene synergistic effect
下载PDF
Metal-organic frameworks-derived metal phosphides for electrochemistry application 被引量:3
11
作者 Xinru Tang Nan Li Huan Pang 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期636-661,共26页
Metal-organic frameworks(MOFs)with high porosity and variable structure have attracted extensive attention in the field of electrochemistry,but their poor conductivity and stability have limited their development.Mate... Metal-organic frameworks(MOFs)with high porosity and variable structure have attracted extensive attention in the field of electrochemistry,but their poor conductivity and stability have limited their development.Materials derived from MOFs can maintain the structural diversity and porosity characteristics of MOFs while improving their electrical conductivity and stability.Metal phosphides play an important role in electrochemistry because they possess rich active sites,unique physicochemical properties,and a porous structure.Published results show that MOF-derived metal-phosphides materials have great promise in the field of electrochemistry due to their controllable structure,high specific surface area,high stability and excellent electrical conductivity.MOF-derived metal-phosphides with significant electrochemical properties can be obtained by simply,economical and scalable synthetic methods.This work reviews the application of MOF-derived metal phosphides in electrochemistry.Specifically,the synthesis methodology and morphological characterization of MOFs derived metal-phosphides and their application in electrochemistry are described.Based on recent scientific advances,we discuss the challenges and opportunities for future research on MOF-derived metal-phosphides materials. 展开更多
关键词 metal-organic frameworks metal phosphides ELECTROCHEMISTRY
下载PDF
Magnetic and magnetocaloric effect of Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass
12
作者 于世霖 田路 +4 位作者 王俊峰 赵新国 李达 莫兆军 李昺 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期602-606,共5页
Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_... Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators. 展开更多
关键词 magnetic materials magnetocaloric effect high-entropy metallic glass magnetic refrigeration large refrigeration capacity
下载PDF
Thioetherification of isoprene and butanethiol on transition metal phosphides 被引量:4
13
作者 Tianyu Ren Mingfeng Li +1 位作者 Yang Chu Jixiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期930-939,共10页
Thioetherification between mercaptan and diolefin is an efficient process to remove mercaptans in FCC gasoline at mild condition, during which the selective hydrogenation of diolefin to monoolefin is also expected. He... Thioetherification between mercaptan and diolefin is an efficient process to remove mercaptans in FCC gasoline at mild condition, during which the selective hydrogenation of diolefin to monoolefin is also expected. Here, Si O2 supported transition metal(Fe, Co, Ni, Mo and W) phosphides were tested for the thioetherification of isoprene and butanethiol on a fixed-bed reactor at 120℃ and 1.5 MPa H2, and their structure before and after reaction was characterized by means of XRD, HRTEM, N2 sorption, CO chemisorption, NH3-TPD, XPS and TG. It was found that, among different metal phosphides, Mo P/Si O2 showed the best performance, and the optimal nominal Mo P loading was 25%. Apart from the nature of metal, the density of metal and acid sites determined the catalyst performance. Metal site was mainly responsible for hydrogenation of isoprene, while acid site dominantly contributed to the thioetherification and the polymerization of olefins. Moreover, a balance between metallic and acidic functions is required to arrive at a desired performance. Excessive metal sites or acid sites led to the over-hydrogenation of isoprene or the severe polymerization of olefins, respectively. 25%Mo P/Si O2 was tested for 37 h time on stream, and butanethiol conversion maintained at 100%; although isoprene conversion remarkably decreased, the selectivity to isopentenes exceeded 80% after reaction for 11 h. We suggest that the deactivation of Mo P/Si O2 is mainly ascribed to the butanethiol poisoning and the carbonaceous deposit, especially the former. 展开更多
关键词 Transition metal phosphides Bifunctional catalyst Thioetherification Selective hydrogenation Catalyst deactivation
下载PDF
Heterostructured bimetallic phosphide nanowire arrays with latticetorsion interfaces for efficient overall water splitting 被引量:1
14
作者 Hua Zhang Hongyi Li +7 位作者 Yintang Zhou Fang Tan Ruijie Dai Xijun Liu Guangzhi Hu Laiming Jiang Anran Chen Renbing Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期420-427,I0011,共9页
Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with exc... Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with excellent lattice torsions and grain boundaries for highly efficient water splitting.According to the microstructural investigations and theoretical calculations,the lattice torsion interface not only contributes to the exposure of more active sites but also effectively tunes the adsorption energy of hydrogen/oxygen intermediates via the accumulation of charge redistribution.As a result,the Fe_(2)P-Co_(2)P heterostructure nanowire array exhibits exceptional bifunctional catalytic activity with overpotentials of 65 and 198 mV at 10 mA cm^(-2) for hydrogen and oxygen evolution reactions,respectively.Moreover,the Fe_(2)P-Co_(2)P/NF-assembled electrolyzer can deliver 10 mA cm^(-2) at an ultralow voltage of1.51 V while resulting in a high solar-to-hydrogen conversion efficiency of 19.8%in the solar-driven water electrolysis cell. 展开更多
关键词 Transition metal phosphide Lattice torsion Heterogeneous interfaces Water splitting Theoretical calculation
下载PDF
Unveiling the Optimal Interfacial Synergy of Plasma-Modulated Trimetallic Mn-Ni-Co Phosphides:Tailoring Deposition Ratio for Complementary Water Splitting 被引量:1
15
作者 Kholoud E.Salem Amina A.Saleh +2 位作者 Ghada E.Khedr Basamat S.Shaheen Nageh K.Allam 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期129-141,共13页
Designing highly active,durable,and nonprecious metal-based bifunctional electrocatalysts for overall water electrolysis is of urgent scientific importance to realize the sustainable hydrogen production,which remains ... Designing highly active,durable,and nonprecious metal-based bifunctional electrocatalysts for overall water electrolysis is of urgent scientific importance to realize the sustainable hydrogen production,which remains a grand challenge.Herein,an innovative approach is demonstrated to synthesize flower-like 3D homogenous trimetallic Mn,Ni,Co phosphide catalysts directly on nickel foam via electrodeposition followed by plasma phosphidation.The electrochemical activity of the catalysts with varying Mn:Ni:Co ratios is assessed to identify the optimal composition,demonstrating that the equimolar trimetallic phosphide yields an outstanding HER catalytic performance with a current density of 10 mA cm^(-2) at an ultra-low overpotential of~14 mV,outperforming the best reported electrocatalysts.This is asserted by the DFT calculations,revealing strong interaction of the metals and the P atom,resulting in enhanced water activation and optimized G_(H)^(*)values for the HER process.Moreover,this optimal composition appreciably catalyzes the OER by exposing more intrinsic active species in-situ formed on the catalyst surface during the OER.Therefore,the Mn_(1)-Ni_(1)-Co_(1)-P-(O)/NF catalyst exhibits a decreased overpotential of~289 mV at 10 mA cm^(-2).More importantly,the electrocatalyst sustains perfect durability up to 48 h at a current density of 10 mA cm^(-2) and continued 5000 cycling stability for both HER and OER.Meanwhile,the assembled MNC-P/NF||MNC-P/NF full water electrolyzer system attains an extremely low cell voltage of 1.48 V at 10 mA cm^(-2).Significantly,the robust stability of the overall system results in a remarkable current retention of~96%after a continuous 50-h run.Therefore,this study provides a facile design and a scalable construction of superb bifunctional ternary MNC-phosphide electrocatalysts for efficient electrochemical energy production systems. 展开更多
关键词 DFT overall water splitting oxygen evolution reaction(OER)/hydrogen evolution reaction(HER) plasma ternary metallic phosphides(MnNiCo)
下载PDF
Charge redistribution caused by sulfur doping of bimetal FeCo phosphides supported on heteroatoms-doped graphene for Zn-air batteries with stable cycling
16
作者 Jin-Tao Ren Yi-Dai Ying +2 位作者 Yu-Ping Liu Wei Li Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期619-630,I0017,共13页
Exploring feasible synthesis approaches to highly efficient and robust bifunctional electrocatalysts toward both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is triggering researcher’s even-increas... Exploring feasible synthesis approaches to highly efficient and robust bifunctional electrocatalysts toward both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is triggering researcher’s even-increasing interest in rechargeable Zn-air batteries.Herein,sulfur-doped bimetal FeCo phosphide nanoparticles dispersed on N,P,S-tri-doped graphene(donated as S-FeCo3P/NPSG)are rationally prepared through a controllable one-step carbothermal-phosphorization strategy.The modified charge distribution and electron-donor properties of S-FeCo3P/NPSG caused by S decoration render a significantly beneficial effect on the electrocatalytic activities.Consequently,the S-FeCo3P/NPSG electrode exhibits extraordinary bifunctional activities toward oxygen electrochemistry of the OER overpotential of 290 m V at 10 m A cm^(-2) and the ORR half-wave potential of 0.83 V,approaching to that of noblemetal IrO_(2)(289 m V)and Pt/C(0.84 V),respectively,but with more stronger operation stability in alkaline media.When S-FeCo3P/NPSG serves as the air cathode for liquid-state Zn-air battery,the large peak power density and energy density,as well as superb discharge-charge durability(cycling life>600 h)of this device are obtained.Furthermore,all-solid-state Zn-air battery with S-FeCo3P/NPSG as air electrode also displays excellent mechanical flexibility,high power density and stable cycling stability.The self-reconstruction behavior of the S-FeCo3P/NPSG cathode catalysts is also investigated during the electrocatalytic Zn-air battery operation.This work would provide some novel inspiration from aspects of bonding and charge distribution for the rational construction of active and cost-efficient bifucntional oxygen electrocatalysts for energy storage and conversion devices. 展开更多
关键词 Charge redistribution metal phosphides Bifunctional electrocatalyst Oxygen electrocatalysis Zinc-air batteries
下载PDF
Deoxygenation of methyl laurate to hydrocarbons on silica-supported Ni-Mo phosphides: Effect of calcination temperatures of precursor 被引量:2
17
作者 Zhengyi Pan Rijie Wang +2 位作者 Mingfeng Li Yang Chu Jixiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期77-86,共10页
SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by me... SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, H2 and NH3 temperature-programmed desorptions (H2-TPD and NH3-TPD). Their catalytic performances for the deoxygena- tion of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500 ℃, respectively, NiMoP2 phase could be formed apart from Ni2P and MoP phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at 600, 700 and 800 ℃, respectively, only Ni2P and MoP phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor. 展开更多
关键词 metal phosphide calcination temperature methyl laurate hydrodeoxygenation DECARBONYLATION
下载PDF
Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization 被引量:4
18
作者 Henrik Dobbelstein Easo P George +3 位作者 Evgeny L Gurevich Aleksander Kostka Andreas Ostendorf Guillaume Laplanche 《International Journal of Extreme Manufacturing》 EI 2021年第1期98-120,共23页
Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHE... Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHEAs),which are difficult to synthesize and process by conventional methods.To evaluate a possible way to accelerate the process,high-throughput laser metal deposition was used in this work to prepare a quinary RHEA,TiZrNbHfTa,as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders.Compositionally graded variants of the quinary RHEA were also analyzed.Our results show that the influence of various parameters such as powder shape and purity,alloy composition,and especially the solidification range,on the processability,microstructure,porosity,and mechanical properties can be investigated rapidly.The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders,while substitutional solid solution strengthening played a minor role. 展开更多
关键词 high-entropy alloy HfNbTaTiZr REFRACTORY powder blend laser metal deposition additive manufacturing high-throughput synthesis
下载PDF
Activating Ru in the pyramidal sites of Ru_(2)P-type structures with earth-abundant transition metals for achieving extremely high HER activity while minimizing noble metal content
19
作者 Sayed M.El-Refaei Patrícia A.Russo +4 位作者 Thorsten Schultz Zhe-Ning Chen Patrick Amsalem Norbert Koch Nicola Pinna 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期80-92,共13页
Rational design of efficient pH-universal hydrogen evolution reaction catalysts to enable large-scale hydrogen production via electrochemical water splitting is of great significance,yet a challenging task.Herein,Ru a... Rational design of efficient pH-universal hydrogen evolution reaction catalysts to enable large-scale hydrogen production via electrochemical water splitting is of great significance,yet a challenging task.Herein,Ru atoms in the Ru_(2)P structure were replaced with M=Co,Ni,or Mo to produce M_(2-x)Ru_(x)P nanocrystals.The metals show strong site preference,with Co and Ni occupying the tetrahedral sites and Ru the square pyramidal sites of the CoRuP and NiRuP Ru_(2)P-type structures.The presence of Co or Ni in the tetrahedral sites leads to charge redistribution for Ru and,according to density functional theory calculations,a significant increase in the Ru d-band centers.As a result,the intrinsic activity of CoRuP and NiRuP increases considerably compared to Ru_(2)P in both acidic and alkaline media.The effect is not observed for MoRuP,in which Mo prefers to occupy the pyramidal sites.In particular,CoRuP shows state-of-the-art activity,outperforming Ru_(2)P with Pt-like activity in 0.5 M H_(2)SO_(4)(η_(10)=12.3 mV;η100=52 mV;turnover frequency(TOF)=4.7 s^(-1)).It remains extraordinarily active in alkaline conditions(η10=12.9 mV;η_(100)=43.5 mV)with a TOF of 4.5 s^(-1),which is 4x higher than that of Ru_(2)P and 10x that of Pt/C.Further increase in the Co content does not lead to drastic loss of activity,especially in alkaline medium,where,for example,the TOF of Co_(1.9)Ru_(0.1)P remains comparable to that of Ru_(2)P and higher than that of Pt/C,highlighting the viability of the adopted approach to prepare cost-efficient catalysts. 展开更多
关键词 electrocatalysis ruthenium phosphide transition metal phosphonates
下载PDF
《电化学基础》课程开放性实验设计教改探索
20
作者 林燕 杨鑫 +2 位作者 李国强 于昊 卢晓 《广州化工》 2025年第1期186-189,共4页
面向国家能源战略及新能源产业的需求,教育部近年设立了一批新能源相关专业,电化学在新能源领域发挥着越来越重要的作用,因此《电化学基础》是本专业的教学重点内容。但是在教学过程中发现,仅通过课堂教学让学生理解一些概念十分困难。... 面向国家能源战略及新能源产业的需求,教育部近年设立了一批新能源相关专业,电化学在新能源领域发挥着越来越重要的作用,因此《电化学基础》是本专业的教学重点内容。但是在教学过程中发现,仅通过课堂教学让学生理解一些概念十分困难。基于此,本文以电解水制氢反应为模型,进行《电化学基础》课程开放性实验设计,让本科生进入实验室,完成制氢反应NiCoP纳米电催化剂的制备、物相组成和微观结构分析,并测试催化剂的电解水制氢极化曲线研究其催化性能,通过分析不同测试条件下催化剂的极化曲线特征加深对电化学重要知识点-极化作用的认识,同时培养学生的科研兴趣,提升学生的实践能力和创新思维。 展开更多
关键词 开放实验 电化学基础 极化作用 过渡金属磷化物 电解水制氢
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部