Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stabil...Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stability,wide band gap and tunable morphology.Both pure TMN and TMN-based materials have been extensively studied concerned with their preparation approaches,nanostructures,and favored performance in various applications.However,the processes towards synthesis of TMN are numerous and complex.Choosing appropriate method to obtain target TMN with desired structure is crucial,which further affects its practical application performance.Herein,this review offers a timely and comprehensive summary of the synthetic ways to TMN and their application in energy related domains.The synthesis section is categorized into in-situ and ex-situ based on where the N element in TMN origins from.Then,overviews on the energy related applications including energy storage,electrocatalysis and photocatalysis are discussed.In the end,the problems to be solved and the development trend of the synthesis and application of transition metal nitrides are prospected.展开更多
Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudoc...Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudocapacitors.Transition metal oxides and nitrides,as the two main kinds of pseudocapacitor electrode materials,can enhance energy density while maintaining high power capability.Recent advances in designing nanostructured architectures and preparing composites with high specific surface areas based on transition metal oxides and nitrides,including ruthenium oxides,nickel oxides,manganese oxides,vanadium oxides,cobalt oxides,iridium oxides,titanium nitrides,vanadium nitrides,molybdenum nitrides and niobium nitrides,are addressed,which would provide important significances for deep researches on pseudocapacitor electrode materials.展开更多
A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the...A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).展开更多
Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunc...Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development.展开更多
Large-scale deployment of Internet of Things (IoT),a revolutionary innovation for a better world,is hampered by the limitation of energy self-sufficiency.Constructing transition metal nitride (TMN)-based micro-superca...Large-scale deployment of Internet of Things (IoT),a revolutionary innovation for a better world,is hampered by the limitation of energy self-sufficiency.Constructing transition metal nitride (TMN)-based micro-supercapacitors is a possible solution by taking advantage of the high conductivity,large specific capacitance,and large tap density of the materials.However,the pseudocapacitive storage mechanism of TMNs is still unclear consequently impeding the design of microdevices.Herein,the functions and mechanism of TMNs with different metal oxynitride (TMNO_(x)) concentrations in pseudocapacitive electrodes are investigated systematically by in situ Raman scattering,ex situ X-ray photoelectron spectroscopy,as well as ion isolation and substitution cyclic voltammetry.It is found that the specific capacitances of TMNs depend on the TMNO_(x) concentrations and the N–M–O site is responsible for the large pseudocapacitance via the Faradic reaction between TMNO_(x) and OH^(-).Our study elucidates the mechanism pertaining to pseudocapacitive charge storage of TMNs and provides insights into the design and optimization of TMNO_(x) as well as other electrode materials for pseudocapacitors.展开更多
Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride cat...Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride catalysts,theγ-Mo_(2)N exhibits superior activity to target product CO,which is 4.6 and 76 times higher than the other two counterparts ofβ-W_(2)N andδ-NbN at 600℃,respectively.Additionally,γ-Mo_(2)N exhibits excellent stability on both cyclic heating-cooling and high space velocity steady state operation.The deactivation degree of cyclic heating-cooling evaluation after 5 cycles and long-term stability performance at 773 and 873 K in 50 h are all less than 10%.In-situ XRD and kinetic studies suggest that theγ-Mo_(2)N itself is able to activate both of the reactants CO_(2)and H_(2).Below 400℃,the reaction mainly occurs at the surface ofγ-Mo_(2)N catalyst.CO_(2)and H_(2)competitively adsorbe on the surface of catalyst and CO_(2)is the relatively stronger surface adsorbate.At a higher temperature,the interstitial vacancies of theγ-Mo_(2)N can be reversibly filled with the oxygen from CO_(2)dissociation.Both of the surface and bulk phase sites ofγ-Mo_(2)N participate in the high temperature CO_(2)hydrogenation pathway.展开更多
Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim...Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.展开更多
As a very promising epitaxy technology,the remote epitaxy has attracted extensive attention in recent years,in which graphene is the most used interlayer material.As an isomorphic of graphene,two-dimensional(2D)hexago...As a very promising epitaxy technology,the remote epitaxy has attracted extensive attention in recent years,in which graphene is the most used interlayer material.As an isomorphic of graphene,two-dimensional(2D)hexagonal boron nitride(h-BN),is another promising interlayer for the remote epitaxy.However,there is a current debate on the feasibility of using h-BN as interlayer in the remote epitaxy.Herein,we demonstrate that the potential field of sapphire can completely penetrate monolayer h-BN,and hence the remote epitaxy of ZrS_(2) layers can be realized on sapphire substrates through monolayer h-BN.The field of sapphire can only partially penetrate the bilayer h-BN and result in the mixing of remote epitaxy and van der Waals(vdWs)epitaxy.Due to the weak interfacial scattering and high crystalline quality of ZrS_(2) epilayer,the ZrS_(2) photodetector with monolayer h-BN shows the best performance,with an on/off ratio of more than 2×10^(5) and a responsivity up to 379 mA·W^(-1).This work provides an efficient approach to prepare single-crystal transition metal dichalcogenides and their heterojunctions with h-BN,which have great potential in developing large-area 2D electronic devices.展开更多
Transition metal nitrides(TMNs)are considered as viable alternatives to noble metal catalysts owing to their versatile electronic structure and favorable catalytic performance.However,the conventional synthetic proces...Transition metal nitrides(TMNs)are considered as viable alternatives to noble metal catalysts owing to their versatile electronic structure and favorable catalytic performance.However,the conventional synthetic processes for TMNs suffer from high energy consumption and low production yield.In this study,a range of TMNs and their hetero-composite arrays were successfully synthesized via an ultrafast flash Joule heating technology within 0.5 s.As a proof concept,the nitrides and hetero-composites were applied for the electrocatalytic hydrazine oxidation reaction(HzOR),in which the Co_(4)N/Mo_(16)N_(7)arrays shows the best performance with a geometric current density of 100 mA cm^(-2)at 23 mV(vs.reversible hydrogen electrode(RHE)).This work paves a new way for the ultrafast synthesis of TMNs which could meet the ever-increased energy crisis.展开更多
A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the amm...A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.展开更多
g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photo...g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed.展开更多
Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,f...Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,free-standing,hetero-structured Ni_(3)N-Ni_(0.2)Mo_(0.8)N nanowire arrays are prepared on carbon cloth(CC)electrodes for hydrogen evolution reaction(HER)and glycerol oxidation reaction(GOR)to formate with a remarkably high Faradaic efficiency of 96%.A two-electrode electrolyzer for GOR-assisted hydrogen production operates with a current density of 10 mA cm^(-2)at an applied cell voltage of 1.40 V,220 mV lower than for alkaline water splitting.In-situ Raman measurements identify Ni(Ⅲ)as the active form of the catalyst for GOR rather than Ni(IV)and in-situ Fourier transform infrared(FTIR)spectroscopy measurements reveal pathways for GOR to formate.From density functional theory(DFT)calculations,the Ni_(3)N-Ni_(0.2)Mo_(0.8)N heterostructure is beneficial for optimizing adsorption energies of reagents and intermediates and for promoting HER and GOR activities by charge redistribution across the heterointerface.The same electrode also catalyzes conversion of ethylene glycol from polyethylene terephthalate(PET)plastic hydrolysate into formate.The combined results show that electrolytic H_(2) and formate production from alkaline glycerol and ethylene glycol solutions provide a promising strategy as a cost-effective energy supply.展开更多
Developing efficient,low-cost non-noble metal-based bifunctional catalysts to achieve excellent hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)kinetics in alkaline media is challenging but very mean...Developing efficient,low-cost non-noble metal-based bifunctional catalysts to achieve excellent hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)kinetics in alkaline media is challenging but very meaningful.However,improving the electronic structure of the catalyst to optimize the adsorption of intermediates and reduce the reaction energy barrier is the key to improve the reaction efficiency.Herein,a V-doped Co_(2)P coupled with high-entropy MXene heterostructure catalyst(V-Co_(2)P@HE)was prepared by a two-step electrodeposition and controlled phosphorization process.The analyses of X-ray absorption spectroscopy,X-ray photoelectron spectroscopy and theoretical calculations jointly show that the introduction of V and the strong electron coupling between the two components optimize the adsorption energy of water molecules and reaction intermediates.Benefiting from the abundant active sites and optimizing intermediate adsorption energy and heterogeneous interface electronic structure,V-Co_(2)P@HE has excellent HER and OER activity and long-term stability under alkaline condition.In particular,when assembled as cathode and anode,the bifunctional V-Co_(2)P@HE catalyst can drive a current density of 10 mA cm^(-2)with only 1.53 V.This work provides new strategies for the application of highentropy MXene and the design of novel non-noble metal-based bifunctional electrolytic water catalysts.展开更多
Adsorption and activation of dinitrogen(N_(2)) is an indispensable process in nitrogen fixation.Metal nitride species continue to attract attention as a promsing catalyst for ammonia synthesis.However,the detailed mec...Adsorption and activation of dinitrogen(N_(2)) is an indispensable process in nitrogen fixation.Metal nitride species continue to attract attention as a promsing catalyst for ammonia synthesis.However,the detailed mechanisms at a molecular level between reactive nitride species and N_(2) remain unclear at elevated temperature,which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system.Herein,the ^(15)N/^(14)N isotopic exchange in the reaction between tantalum nitride cluster anions Ta_(3)^(14)N_(3)^(-) and ^(15)N_(2) leading to the regeneration of ^(14)N_(2)/^(14)N^(15)N was observed at elevated temperature(393-593 K)using mass spectrometry.With the aid of theoretical calculations,the exchange mechanism and the effect of temperature to promote the dissociation of N_(2) on Ta_(3)N_(3)^(-) were elucidated.A comparison experiment for Ta_(3)^(14)N_(4)^(-)/^(15)N_(2) couple indicated that only desorption of ^(15)N_(2) from Ta_(3)^(14)N_(4)^(15)N_(2)^(-) took place at elevated temperature.The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species.This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.展开更多
With the increasing demand for energy, various emerging energy storage/conversion technologies have gradually penetrated human life, providing numerous conveniences. The practical application efficiency is often affec...With the increasing demand for energy, various emerging energy storage/conversion technologies have gradually penetrated human life, providing numerous conveniences. The practical application efficiency is often affected by the slow kinetics of hydrogen or oxygen electrocatalytic reactions(hydrogen evolution and oxidation reactions, oxygen evolution and reduction reactions) among the emerging devices. Therefore, the researchers devote to finding cost-effective electrocatalysts. Non-noble metal catalysts have low cost and good catalytic activity, but poor stability, agglomeration, dissolution, and other problems will occur after a long cycle, such as transition metal oxides and carbides. Transition metal nitrides(TMNs) stand out among all kinds of non-noble metal catalysts because of the intrinsic platinum-like electrocatalytic activities, relatively high conductivity, and wide range of tunability. In this review, the applications of TMNs in electrocatalytic fields are summarized based on the number of metals contained in TMNs. The practical application potentials of TMNs in fuel cell, water splitting, zinc-air battery and other electrochemical energy storage/conversion devices are also listed. Finally, the design strategies and viewpoints of TMNs-based electrocatalyst are summarized. The potential challenges of TMNs-based electrocatalyst in the development of electrocatalytic energy devices in the future are prospected.展开更多
There are growing demands for the next generation lithium ion batteries with high energy density as well as high power performance for renewable energy storage and electric vehicles application.Recently,nanoscale mate...There are growing demands for the next generation lithium ion batteries with high energy density as well as high power performance for renewable energy storage and electric vehicles application.Recently,nanoscale materials with outstanding energy storage capability have received considerable attention due to their unique effect caused by the reduced dimensions.This review describes some recent developments of our group in research of transition metal nitride nanocomposites in application of energy storage,especially for lithium ion battery and supercapacitor.The strategies of mixed conduction(electron and ion) network with a favorable charge transportation interface in the design of the nanocomposites for such devices are highlighted.展开更多
基金support offered by National Natural Science Foundation of China(NSFC,Grant No.21403091)。
文摘Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stability,wide band gap and tunable morphology.Both pure TMN and TMN-based materials have been extensively studied concerned with their preparation approaches,nanostructures,and favored performance in various applications.However,the processes towards synthesis of TMN are numerous and complex.Choosing appropriate method to obtain target TMN with desired structure is crucial,which further affects its practical application performance.Herein,this review offers a timely and comprehensive summary of the synthetic ways to TMN and their application in energy related domains.The synthesis section is categorized into in-situ and ex-situ based on where the N element in TMN origins from.Then,overviews on the energy related applications including energy storage,electrocatalysis and photocatalysis are discussed.In the end,the problems to be solved and the development trend of the synthesis and application of transition metal nitrides are prospected.
基金Project(51274248) supported by the National Natural Science Foundation of ChinaProjects(2015DFR50580,2013DFA31440) supported by the International Scientific and Technological Cooperation Projects of China
文摘Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudocapacitors.Transition metal oxides and nitrides,as the two main kinds of pseudocapacitor electrode materials,can enhance energy density while maintaining high power capability.Recent advances in designing nanostructured architectures and preparing composites with high specific surface areas based on transition metal oxides and nitrides,including ruthenium oxides,nickel oxides,manganese oxides,vanadium oxides,cobalt oxides,iridium oxides,titanium nitrides,vanadium nitrides,molybdenum nitrides and niobium nitrides,are addressed,which would provide important significances for deep researches on pseudocapacitor electrode materials.
基金the National Natural Science Foundation of China(Nos.51702137,51802128)the Natural Science Foundation of Jiangsu Province,China(No.BK20181013)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(No.18KJB430013)the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering,China(No.2020-KF-20).
文摘A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).
基金financial support from the National Key Research and Development Program of China(2017YFB0102900)
文摘Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development.
基金financially supported by the Hong Kong Scholars Program (XJ2018009)the City University of Hong Kong Strategic Research Grant (SRG) (7005505)+3 种基金the Shenzhen – Hong Kong Innovative Collaborative Research and Development Program (SGLH20181109110802117 and CityU 9240014)the National Natural Science Foundation of China(U2004210, 21875080, 51572100 and 52003129)the Innovative Research Group Project of the Natural Science Foundation of Hubei Province (2019CFA020)the Shandong Provincial Natural Science Foundation (ZR2019BB006)。
文摘Large-scale deployment of Internet of Things (IoT),a revolutionary innovation for a better world,is hampered by the limitation of energy self-sufficiency.Constructing transition metal nitride (TMN)-based micro-supercapacitors is a possible solution by taking advantage of the high conductivity,large specific capacitance,and large tap density of the materials.However,the pseudocapacitive storage mechanism of TMNs is still unclear consequently impeding the design of microdevices.Herein,the functions and mechanism of TMNs with different metal oxynitride (TMNO_(x)) concentrations in pseudocapacitive electrodes are investigated systematically by in situ Raman scattering,ex situ X-ray photoelectron spectroscopy,as well as ion isolation and substitution cyclic voltammetry.It is found that the specific capacitances of TMNs depend on the TMNO_(x) concentrations and the N–M–O site is responsible for the large pseudocapacitance via the Faradic reaction between TMNO_(x) and OH^(-).Our study elucidates the mechanism pertaining to pseudocapacitive charge storage of TMNs and provides insights into the design and optimization of TMNO_(x) as well as other electrode materials for pseudocapacitors.
基金financially supported by the National Natural Science Foundation of China(22002140)Zhejiang Provincial Natural Science Foundation of China(LR21B030001 and LR22b030003)+1 种基金Young Elite Scientist Sponsorship Program by CAST(No.2019QNRC001)Use of the Advanced Photon Source(beamlines 17-BM,for in-situ XRD characterization)was supported by the U.S.DOE under contract no.DE-AC02-06CH11357。
文摘Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride catalysts,theγ-Mo_(2)N exhibits superior activity to target product CO,which is 4.6 and 76 times higher than the other two counterparts ofβ-W_(2)N andδ-NbN at 600℃,respectively.Additionally,γ-Mo_(2)N exhibits excellent stability on both cyclic heating-cooling and high space velocity steady state operation.The deactivation degree of cyclic heating-cooling evaluation after 5 cycles and long-term stability performance at 773 and 873 K in 50 h are all less than 10%.In-situ XRD and kinetic studies suggest that theγ-Mo_(2)N itself is able to activate both of the reactants CO_(2)and H_(2).Below 400℃,the reaction mainly occurs at the surface ofγ-Mo_(2)N catalyst.CO_(2)and H_(2)competitively adsorbe on the surface of catalyst and CO_(2)is the relatively stronger surface adsorbate.At a higher temperature,the interstitial vacancies of theγ-Mo_(2)N can be reversibly filled with the oxygen from CO_(2)dissociation.Both of the surface and bulk phase sites ofγ-Mo_(2)N participate in the high temperature CO_(2)hydrogenation pathway.
基金financially supported by the National Key R&D Program of China(2022YFA1503003)the National Natural Science Foundation of China(91961111,22271081)+3 种基金the Natural Science Foundation of Heilongjiang Province(ZD2021B003)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020004)The Basic Research Fund of Heilongjiang University in Heilongjiang Province(2021-KYYWF-0039)the Heilongjiang University Excellent Youth Foundation。
文摘Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.
基金supported by the National Natural Science Foundation of China(Nos.62274151 and 61874106)the Natural Science Foundation of Beijing Municipality(No.4212045)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB43000000).
文摘As a very promising epitaxy technology,the remote epitaxy has attracted extensive attention in recent years,in which graphene is the most used interlayer material.As an isomorphic of graphene,two-dimensional(2D)hexagonal boron nitride(h-BN),is another promising interlayer for the remote epitaxy.However,there is a current debate on the feasibility of using h-BN as interlayer in the remote epitaxy.Herein,we demonstrate that the potential field of sapphire can completely penetrate monolayer h-BN,and hence the remote epitaxy of ZrS_(2) layers can be realized on sapphire substrates through monolayer h-BN.The field of sapphire can only partially penetrate the bilayer h-BN and result in the mixing of remote epitaxy and van der Waals(vdWs)epitaxy.Due to the weak interfacial scattering and high crystalline quality of ZrS_(2) epilayer,the ZrS_(2) photodetector with monolayer h-BN shows the best performance,with an on/off ratio of more than 2×10^(5) and a responsivity up to 379 mA·W^(-1).This work provides an efficient approach to prepare single-crystal transition metal dichalcogenides and their heterojunctions with h-BN,which have great potential in developing large-area 2D electronic devices.
基金supported by the National Natural Science Foundation of China(22375001)the Natural Science Foundation of Anhui Province(2208085Y03,2208085QB30)+2 种基金the University Synergy Innovation Program of Anhui Province(GXXT-2023-036)the Key Scientific Research Foundation of the Education Department of Anhui Province(2023AH050113)the Start-up Grant from Anhui University。
文摘Transition metal nitrides(TMNs)are considered as viable alternatives to noble metal catalysts owing to their versatile electronic structure and favorable catalytic performance.However,the conventional synthetic processes for TMNs suffer from high energy consumption and low production yield.In this study,a range of TMNs and their hetero-composite arrays were successfully synthesized via an ultrafast flash Joule heating technology within 0.5 s.As a proof concept,the nitrides and hetero-composites were applied for the electrocatalytic hydrazine oxidation reaction(HzOR),in which the Co_(4)N/Mo_(16)N_(7)arrays shows the best performance with a geometric current density of 100 mA cm^(-2)at 23 mV(vs.reversible hydrogen electrode(RHE)).This work paves a new way for the ultrafast synthesis of TMNs which could meet the ever-increased energy crisis.
文摘A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.
基金financially supported by the National Natural Science Foundation (No.52072347, 51972288, 51672258 and 51572246)the Fundamental Research Funds for the Central Universities (No. 2652019144 and 2652018287)+1 种基金the financial supports from the Science and Technology Program of Guangdong Province (2019A050510012)Shenzhen Science, Technology and Innovation Commission (SGDX2019081623240364).
文摘g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Science&Technology Commission of Shanghai Municipality(19DZ2271500)the Fundamental Research Funds for the Central Universities。
文摘Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,free-standing,hetero-structured Ni_(3)N-Ni_(0.2)Mo_(0.8)N nanowire arrays are prepared on carbon cloth(CC)electrodes for hydrogen evolution reaction(HER)and glycerol oxidation reaction(GOR)to formate with a remarkably high Faradaic efficiency of 96%.A two-electrode electrolyzer for GOR-assisted hydrogen production operates with a current density of 10 mA cm^(-2)at an applied cell voltage of 1.40 V,220 mV lower than for alkaline water splitting.In-situ Raman measurements identify Ni(Ⅲ)as the active form of the catalyst for GOR rather than Ni(IV)and in-situ Fourier transform infrared(FTIR)spectroscopy measurements reveal pathways for GOR to formate.From density functional theory(DFT)calculations,the Ni_(3)N-Ni_(0.2)Mo_(0.8)N heterostructure is beneficial for optimizing adsorption energies of reagents and intermediates and for promoting HER and GOR activities by charge redistribution across the heterointerface.The same electrode also catalyzes conversion of ethylene glycol from polyethylene terephthalate(PET)plastic hydrolysate into formate.The combined results show that electrolytic H_(2) and formate production from alkaline glycerol and ethylene glycol solutions provide a promising strategy as a cost-effective energy supply.
基金the financial supports from the National Natural Science Foundation of China(52222408)。
文摘Developing efficient,low-cost non-noble metal-based bifunctional catalysts to achieve excellent hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)kinetics in alkaline media is challenging but very meaningful.However,improving the electronic structure of the catalyst to optimize the adsorption of intermediates and reduce the reaction energy barrier is the key to improve the reaction efficiency.Herein,a V-doped Co_(2)P coupled with high-entropy MXene heterostructure catalyst(V-Co_(2)P@HE)was prepared by a two-step electrodeposition and controlled phosphorization process.The analyses of X-ray absorption spectroscopy,X-ray photoelectron spectroscopy and theoretical calculations jointly show that the introduction of V and the strong electron coupling between the two components optimize the adsorption energy of water molecules and reaction intermediates.Benefiting from the abundant active sites and optimizing intermediate adsorption energy and heterogeneous interface electronic structure,V-Co_(2)P@HE has excellent HER and OER activity and long-term stability under alkaline condition.In particular,when assembled as cathode and anode,the bifunctional V-Co_(2)P@HE catalyst can drive a current density of 10 mA cm^(-2)with only 1.53 V.This work provides new strategies for the application of highentropy MXene and the design of novel non-noble metal-based bifunctional electrolytic water catalysts.
基金supported by the National Natural Science Foundation of China(No.21973101 and No.21833011)the Youth Innovation Promotion Association CAS(No.2020034)the K.C.Wong Education Foundation。
文摘Adsorption and activation of dinitrogen(N_(2)) is an indispensable process in nitrogen fixation.Metal nitride species continue to attract attention as a promsing catalyst for ammonia synthesis.However,the detailed mechanisms at a molecular level between reactive nitride species and N_(2) remain unclear at elevated temperature,which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system.Herein,the ^(15)N/^(14)N isotopic exchange in the reaction between tantalum nitride cluster anions Ta_(3)^(14)N_(3)^(-) and ^(15)N_(2) leading to the regeneration of ^(14)N_(2)/^(14)N^(15)N was observed at elevated temperature(393-593 K)using mass spectrometry.With the aid of theoretical calculations,the exchange mechanism and the effect of temperature to promote the dissociation of N_(2) on Ta_(3)N_(3)^(-) were elucidated.A comparison experiment for Ta_(3)^(14)N_(4)^(-)/^(15)N_(2) couple indicated that only desorption of ^(15)N_(2) from Ta_(3)^(14)N_(4)^(15)N_(2)^(-) took place at elevated temperature.The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species.This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK20191430)Six Talent Peaks Project in Jiangsu Province (No. XNY-009)+2 种基金High-tech Research Key Laboratory of Zhenjiang (No. SS2018002)Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency (No. BEE201904)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘With the increasing demand for energy, various emerging energy storage/conversion technologies have gradually penetrated human life, providing numerous conveniences. The practical application efficiency is often affected by the slow kinetics of hydrogen or oxygen electrocatalytic reactions(hydrogen evolution and oxidation reactions, oxygen evolution and reduction reactions) among the emerging devices. Therefore, the researchers devote to finding cost-effective electrocatalysts. Non-noble metal catalysts have low cost and good catalytic activity, but poor stability, agglomeration, dissolution, and other problems will occur after a long cycle, such as transition metal oxides and carbides. Transition metal nitrides(TMNs) stand out among all kinds of non-noble metal catalysts because of the intrinsic platinum-like electrocatalytic activities, relatively high conductivity, and wide range of tunability. In this review, the applications of TMNs in electrocatalytic fields are summarized based on the number of metals contained in TMNs. The practical application potentials of TMNs in fuel cell, water splitting, zinc-air battery and other electrochemical energy storage/conversion devices are also listed. Finally, the design strategies and viewpoints of TMNs-based electrocatalyst are summarized. The potential challenges of TMNs-based electrocatalyst in the development of electrocatalytic energy devices in the future are prospected.
基金supported by the Hundred Talents Program of the Chinese Academy of Sciencesthe National Basic Research Program of China (2011CB935703)+1 种基金Shandong Provincial Funds for Distinguished Young Scientist (JQ200906)the National Natural Science Foundation of China (20971077)
文摘There are growing demands for the next generation lithium ion batteries with high energy density as well as high power performance for renewable energy storage and electric vehicles application.Recently,nanoscale materials with outstanding energy storage capability have received considerable attention due to their unique effect caused by the reduced dimensions.This review describes some recent developments of our group in research of transition metal nitride nanocomposites in application of energy storage,especially for lithium ion battery and supercapacitor.The strategies of mixed conduction(electron and ion) network with a favorable charge transportation interface in the design of the nanocomposites for such devices are highlighted.