Reversible data hiding is a confidential communication technique that takes advantage of image file characteristics,which allows us to hide sensitive data in image files.In this paper,we propose a novel high-fidelity ...Reversible data hiding is a confidential communication technique that takes advantage of image file characteristics,which allows us to hide sensitive data in image files.In this paper,we propose a novel high-fidelity reversible data hiding scheme.Based on the advantage of the multipredictor mechanism,we combine two effective prediction schemes to improve prediction accuracy.In addition,the multihistogram technique is utilized to further improve the image quality of the stego image.Moreover,a model of the grouped knapsack problem is used to speed up the search for the suitable embedding bin in each sub-histogram.Experimental results show that the quality of the stego image of our scheme outperforms state-of-the-art schemes in most cases.展开更多
To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For si...To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.展开更多
Objective: Clinical reasoning is an essential feature of health care practice; it is also a crucial ability for providing patient care of high quality. It has been identified that graduate nurses may lack the clinica...Objective: Clinical reasoning is an essential feature of health care practice; it is also a crucial ability for providing patient care of high quality. It has been identified that graduate nurses may lack the clinical reasoning skills to deliver safe and effective patient cam. It is therefore of paramount importance to enhance nursing students' clinical reasoning ability. High-fidelity simulation (HFS) is proved to be an effective teaching and learning method, which may also have some advantages over other teaching methods. Methods: The authors retrospectively reviewed the related literature, illustrated the application of high-fidelity simulation teaching method in nursing education, putting the focus on the use of it in teaching with clinical reasoning. Results: The application of high-fidelity simulation to nursing education can simulate the clinical situation, thus to create a safe, continuous and efficient learning environment for students, and it can effectively improve students' clinical reasoning ability. Conclusions: high-fidelity simulation is effective for clinical reasoning teaching in nursing education. The extension of its application in China should be of great value. The relevant further study is suggested focusing on how to overcome its own limitations and have it better applied in nursing education in China.展开更多
Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is...Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms.展开更多
Objective:This study is aimed to develop student simulated patient(SSP)training content and evaluation indicators,and further explores their validity and reliabilities.Methods:Delphi consultations with 20 nursing expe...Objective:This study is aimed to develop student simulated patient(SSP)training content and evaluation indicators,and further explores their validity and reliabilities.Methods:Delphi consultations with 20 nursing exper ts were conducted.The weights of indicators were calculated through the analytic hierarchy process.SSP training was conducted with a high-fidelity nursing simulation.Results:The expert positive coefficients were 0.952 in the first round consultation and 1.00 in the second round consultation.The expert authority coefficient was reported as 0.87.The training included role and responsibility of simulated patient(SP),script interpretation,plot performance,and training for a rater,with a total of 17 indicators.SSP evaluation consisted of disease knowledge,role portrayal,and performance fidelity and since being a rater,it consists of 20 indicators in total.The coordination coefficients of two rounds of consultation ranged from 0.530 to 0.918.The content validity of SSP evaluation indicators was 0.95.The inter-rater reliability was repor ted as 0.866,and the internal consistency established using Cronbach’sαwas 0.727.Conclusions:Students as SPs should have first-hand knowledge and experience within the simulated scenarios.SSP training content and evaluation indicators were determined through the Delphi consensus combined with analytic hierarchy process.The evaluation indicators were valid and reliable,and provided the objective and quantifiable measurements for SSP training in nursing。展开更多
It is shown that the introduction of thermal effect, zero-point vibration, and phonon anharmonicity to a high quality and first-principle-Sased force field (atomic potential) results in a significant improvement in ...It is shown that the introduction of thermal effect, zero-point vibration, and phonon anharmonicity to a high quality and first-principle-Sased force field (atomic potential) results in a significant improvement in predict- ing the densities for the α phase crystalline hexahydro-1,3,5-trinitro-l,3,5-triazine (RDX), and derivation of its high-fidelity Hugoniot locus and Mie-Grfineisen equation of state covering a very wide range of pressures and temperatures. This work can be used to efficiently and accurately predict the thermophysical properties of solid explosives over the pressures and temperatures to which they are subjected, which is a long-standing issue in the field of energetic materials.展开更多
Objective:To evaluate nursing students’assessment and communication skills through an objective structured clinical examination(OSCE)within a high-fidelity simulation using a student-simulated patient(SSP)and analyze...Objective:To evaluate nursing students’assessment and communication skills through an objective structured clinical examination(OSCE)within a high-fidelity simulation using a student-simulated patient(SSP)and analyze the validity,reliability,degree of difficulty,and discriminability of the OSCE.Methods:A descriptive study was conducted at one nursing school in Macao.All scenarios were designed using a high-fidelity simulator combined with SSPs.A convenience sample of 54 baccalaureate nursing students completed the OSCE.The nursing assessment OSCE checklist(NAOC)and the communication evaluation rubric(CER)were used as observational measurements with three-point Likert scales(2=Achieved,1=Partly achieved,0=Not completed/Incorrect).Results:Difficulty coefficients of the exam were 0.63 for nursing assessment skills and 0.56 for communication skills.The discrimination index of the majority items of the NAOC(86.4%)was>0.20,showing a better to good discriminability.The items of the CER had satisfactory indexes of item discrimination(from 0.38 to 0.84).Students received high scores in conducting blood oxygen saturation and cardiac and lung auscultation but low scores in vomiting and diarrhea assessment.Students presented good communication skills in eye contacting and listening,but culture assessment needs to be improved.The students with experiences in simulation or simulated patient(SP)interactions had better assessment and communication skills than students without those experiences.There was a positive relationship between nursing assessment and communication skills(r=0.67,P=0.000).Conclusions:SSPs were involved in enhancing the realism of interactions in simulated scenarios.Nursing students can conduct nursing assessments specific to patient conditions,explain the conditions to the patient,and ensure that the patient remains informed at all times of the precautions to be taken.However,students’cultural awareness and some communication skills need further training.With moderate difficulty and high discrimination index,OSCE showed satisfactory reliability and validity.展开更多
Sound recording quality, whether digital or analogue, presupposes true-to-life recording of the original audio signal. Contemporary audio media do not meet the requirements of high-fidelity recording since they do not...Sound recording quality, whether digital or analogue, presupposes true-to-life recording of the original audio signal. Contemporary audio media do not meet the requirements of high-fidelity recording since they do not insufficiently utilize the bandwidth for D/A conversion and sufficient word length. This paper deals with the values of these parameters in high-fidelity recording. The paper presents the results of a research into characteristics of faithful and high-fidelity audio recording considering the frequency range, signal-to-noise ratio and dynamic range.展开更多
Single-cell Hi-C technology provides an unprecedented opportunity to reveal chromatin structure in individual cells.However,high sequencing cost impedes the generation of biological Hi-C data with high sequencing dept...Single-cell Hi-C technology provides an unprecedented opportunity to reveal chromatin structure in individual cells.However,high sequencing cost impedes the generation of biological Hi-C data with high sequencing depths and multiple replicates for downstream analysis.Here,we developed a single-cell Hi-C simulator(scHi-CSim)that generates high-fidelity data for benchmarking.scHi-CSim merges neighboring cells to overcome the sparseness of data,samples interactions in distance-stratified chromosomes to maintain the heterogeneity of single cells,and estimates the empirical distribution of restriction fragments to generate simulated data.We demonstrated that scHi-CSim can generate high-fidelity data by comparing the performance of single-cell clustering and detection of chromosomal high-order structures with raw data.Furthermore,scHi-CSim is flexible to change sequencing depth and the number of simulated replicates.We showed that increasing sequencing depth could improve the accuracy of detecting topologically associating domains.We also used scHi-CSim to generate a series of simulated datasets with different sequencing depths to benchmark scHi-C clustering methods.展开更多
High-fidelity simulations of powder bed fusion(PBF)additive manufacturing have made significant progress over the past decade.In this study,an efficient two-dimensional frame was developed for simulating the electron ...High-fidelity simulations of powder bed fusion(PBF)additive manufacturing have made significant progress over the past decade.In this study,an efficient two-dimensional frame was developed for simulating the electron beam PBF process with hundreds of tracks for the direct prediction of the build quality.The applicable parameter range of the developed model was determined by comparing the heat transfer with that in three-dimensional cases.Subsequently,powder deposition and selective melting were coupled for a continuous simulation of the multilayer process.Three powder deposition models were utilized to generate random powder particles,and their effects on the packing structure and the resultant simulated build quality were investigated.The predicted build quality was validated using experimental results from independent studies.By reproducing the building process,the defect development mechanism in a multilayer process was revealed for the coalescence behaviors of randomly distributed powder particles,which also confirmed the importance of simulation at the high-fidelity powder scale.The effects of key process parameters during multilayer and multi-track processes on the build quality were systematically investigated.In particular,the formation statuses of all tracks during the simulated building process were recorded and analyzed statistically,which provided crucial information on the printing process for understanding the building mechanism or performing uncertainty analysis.展开更多
Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease- causing mutations in patients. However, problems such as mosaic...Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease- causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical applicaUon of such approaches. Recently, a base editor (BE) system built on cytidine (C) deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T) efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high- fidelity version of base editor 2 (HF2-BE2), and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.展开更多
Forward Variable Area Bypass Injector(FVABI)is one of key components which contributes to modulate the cycle parameters of Variable Cycle Engine(VCE)under various operation conditions.The modeling method of zero-dimen...Forward Variable Area Bypass Injector(FVABI)is one of key components which contributes to modulate the cycle parameters of Variable Cycle Engine(VCE)under various operation conditions.The modeling method of zero-dimensional FVABI was reviewed and its deficiency was analyzed based on FVABI flow characteristic.In order to improve the accuracy of VCE performance simulation,the high-fidelity modeling method of FVABI was developed based on its working characteristics.Then it was coupled with the zero-dimensional VCE model and the multi-level VCE model was built.The results indicate that the geometric and aerodynamic parameters can affect the interaction between the two airflows and the zero-dimensional FVABI model is too simple to predict the component performance accurately,especially when the FVABI inner bypass is chocked.Based on the performance curves for single bypass mode and the regression model of multi-scale support vector regression for double bypass mode,the high-fidelity model can predict FVABI performance accurately and rapidly.The integration of high-fidelity FVABI model into zerodimensional VCE model can be done by adjusting iterative variables and balance equations.The multi-level model has good convergence and it can predict VCE performance when the FVABI inner bypass is chocked.展开更多
Engineering design is undergoing a paradigm shift from design for performance to design for affordability, operability, and durability, seeking multi-objective optimization. To facilitate this transformation, signific...Engineering design is undergoing a paradigm shift from design for performance to design for affordability, operability, and durability, seeking multi-objective optimization. To facilitate this transformation, significantly extended design freedom and knowledge must be available in the early design stages. This paper presents a high-fidelity framework for design and optimization of the liquid swirl injectors that are widely used in aerospace propulsion and power-generation systems. The framework assembles a set of techniques, including Design Of Experiment(DOE), high-fidelity Large Eddy Simulations(LES), machine learning, Proper Orthogonal Decomposition(POD)-based Kriging surrogate modeling(emulation), inverse problem optimization, and uncertainty quantification. LES-based simulations can reveal detailed spatiotemporal evolution of flow structures and flame dynamics in a high-fidelity manner, and identify important injector design parameters according to their effects on propellant mixing, flame stabilization, and thermal protection.For a given a space of design parameters, DOE determines the number of design points to perform LES-based simulations. POD-based emulations, trained by the LES database, can effectively explore the design space and deduce an optimal group of design parameters in a turn-around time that is reduced by three orders of magnitude. The accuracy of the emulated results is validated, and the uncertainty of prediction is quantified. The proposed design methodology is expected to profoundly extend the knowledge base and reduce the cost for initial design stages.展开更多
Designing a high-fidelity cutting device is one of the difficulties in hydrate samples pressure-holding transfer.Due to the limitations of the existing mechanical system,there is much damage to the cut surface of hydr...Designing a high-fidelity cutting device is one of the difficulties in hydrate samples pressure-holding transfer.Due to the limitations of the existing mechanical system,there is much damage to the cut surface of hydrate samples,with many chips produced,which seriously affects the quality of samples.In this paper,a new cutting device utilizes two servo motors to achieve a high degree of automation.Using the Archimedes spiral,it achieves low disturbance of the cut surface and provides accurate control of the process.In addition,due to the operation of the sample long-stroke push unit,cutting hydrate samples of any length with almost no chips within a short cutting time can be achieved.Laboratory and sea tests have achieved all design requirements of the equipment and strongly demonstrate its benefit and stability.It is concluded that this new high-fidelity cutting technology is practically efficient.The physical state of the hydrate can be maintained to the greatest extent,and thus the new equipment provides significant support for the exploration and development of hydrate resources.展开更多
Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot matc...Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot match, acoustic holograms pursue the realization of high-resolution complex acoustic fields and gradually tend to high-frequency ultrasound applications. However, conventional continuous phase holograms are limited by three-dimensional(3D) printing size, and the presence of unavoidable small printing errors makes it difficult to achieve acoustic field reconstruction at high frequency accuracy. Here, we present an optimized discrete multi-step phase hologram. It can ensure the reconstruction quality of image with high robustness, and properly lower the requirement for the 3D printing accuracy. Meanwhile, the concept of reconstruction similarity is proposed to refine a measure of acoustic field quality. In addition, the realized complex acoustic field at 20 MHz promotes the application of acoustic holograms at high frequencies and provides a new way to generate high-fidelity acoustic fields.展开更多
Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are condu...Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are conducted in prescribed conditions that should be representative of the service installation. In actual project, conditions encountered on site may vary from the test environment and it would be expensive and time consuming to validate each deviation with a physical test. High-fidelity physics-based (HFPB) finite element modeling can provide precise simulations of the behavior of anti-ram bollards. This paper presents the use of HFPB finite element modeling, using LS-DYNA, in an actual project to evaluate the performance of an anti-ram bollard design subjected to various boundary conditions representing the physical conditions encountered on site. The study shows that boundary conditions can have a significant influence on the performance of the anti-ram bollards. This suggests that anti-ram bollards must be designed and engineered according to actual conditions that are found on site. It also shows that HFPB modeling can be an effective tool that supplements physical testing of anti-ram bollards.展开更多
Background: Simulation is perceived as an important part to the nursing clinical educational experience since it can offer a safe learning environment for the students’ clinical practice. Objective: The purpose of th...Background: Simulation is perceived as an important part to the nursing clinical educational experience since it can offer a safe learning environment for the students’ clinical practice. Objective: The purpose of this study was to explore the Lebanese student’s experience of benefits of high fidelity simulation in nursing education. Design: A qualitative study using open-ended questionnaire. Setting: This study was implemented at private university in Lebanon between January and April 2015. Participants: A purposive sample was sought from those who have a simulated experience. Methods: Qualitative data were collected via interviews and analysed using a thematic approach. Findings: Four major themes were identified: “Bridging Theory to Clinical Practice”, “Developing Critical Thinking and Decision-making”, “Practicing Safely Leads to Enhancing Confidence”, “Teamwork Spirit and students’ motivation to earn and practice more”. Conclusion: Simulation was found to be an acceptable learning strategy for novice nursing students. The use of simulations is a useful and effective learning strategy. Students with a higher positive attitude towards the simulation experience displayed better learning outcomes. Thus, the integration of simulation into the learning experience of nursing students will bridge the gap between theory and practice;enhance their critical thinking and motivation aptitudes along with traditional clinical practice by sparing them a safe milieu.展开更多
The pneumatic probe is widely used for contact measurements in turbomachinery flow field research.However,it inevitably interferes with the original flow field,leading to additional errors,particularly in wake flow fi...The pneumatic probe is widely used for contact measurements in turbomachinery flow field research.However,it inevitably interferes with the original flow field,leading to additional errors,particularly in wake flow fields or transonic regions with significant pressure gradients.This study employed Reynolds-Averaged Navier-Stokes delete and high-fidelity numerical simulation to investigate the impact of an inserted pneumatic probe on the wake flow field of a transonic turbine blade and compared it to the baseline flow field.Results indicate that the probe causes the shock waves premature occurrence in the high subsonic wake region near the turbine blade trailing edge.These shock waves affect vortex shedding by thickening the boundary layer near the trailing edge and changing the shedding pattern from high-frequency-low-energy to low-frequencyhigh-energy.In addition,the extra flow loss is incurred,and the blade's heat transfer characteristic is changed.This research provides a reference for testing experiments in complex transonic flow fields,guiding experimental researchers to minimize instrument interference with the original flow field.展开更多
Next-generation sequencing(NGS),represented by Illumina platforms,has been an essential cornerstone of basic and applied research.However,the sequencing error rate of 1 per 1000 bp(10^(−3))represents a serious hurdle ...Next-generation sequencing(NGS),represented by Illumina platforms,has been an essential cornerstone of basic and applied research.However,the sequencing error rate of 1 per 1000 bp(10^(−3))represents a serious hurdle for research areas focusing on rare mutations,such as somatic mosaicism or microbe heterogeneity.By examining the high-fidelity sequencing methods developed in the past decade,we summarized three major factors underlying errors and the corresponding 12 strategies mitigating these errors.We then proposed a novel framework to classify 11 preexisting representative methods according to the corresponding combinatory strategies and identified three trends that emerged during methodological developments.We further extended this analysis to eight long-read sequencing methods,emphasizing error reduction strategies.Finally,we suggest two promising future directions that could achieve comparable or even higher accuracy with lower costs in both NGS and long-read sequencing.展开更多
Particle separation from gases is an important unit operation in manifold industrial applications,such as those conducted in environmental protection.For analysis of particle penetration and separation in fiber filter...Particle separation from gases is an important unit operation in manifold industrial applications,such as those conducted in environmental protection.For analysis of particle penetration and separation in fiber filters,standard dust particles (Al2O3)were loaded in the gas flow of a filter test facility and deposited within new and uncharged fiber filters.The loaded filters were analyzed by micro-computer tomography and scanning electron microscopy.Three-dimensional tomograms of the samples show an exponential decay of the penetration depth of the particles.This dependency is confirmed by simulations conducted using the discrete element method coupled with computational fluid dynamics within unloaded and loaded fiber structures.Microscale processes of particle separation at the fibers as well as the filtration efficiency and time-dependent filtering process are derived from the simuiations.Local particle clustering in the filter medium and partial filter clogging are thus identified.展开更多
基金funded by National Science Council,Taiwan,the Grant Number is NSC 111-2410-H-167-005-MY2.
文摘Reversible data hiding is a confidential communication technique that takes advantage of image file characteristics,which allows us to hide sensitive data in image files.In this paper,we propose a novel high-fidelity reversible data hiding scheme.Based on the advantage of the multipredictor mechanism,we combine two effective prediction schemes to improve prediction accuracy.In addition,the multihistogram technique is utilized to further improve the image quality of the stego image.Moreover,a model of the grouped knapsack problem is used to speed up the search for the suitable embedding bin in each sub-histogram.Experimental results show that the quality of the stego image of our scheme outperforms state-of-the-art schemes in most cases.
基金supported by the China Postdoctoral Science Foundation(No.2021M703045)the National Natural Science Foundation of China(No.12075067)the National Key R&D Program of China(No.2018YFE0180900).
文摘To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.
文摘Objective: Clinical reasoning is an essential feature of health care practice; it is also a crucial ability for providing patient care of high quality. It has been identified that graduate nurses may lack the clinical reasoning skills to deliver safe and effective patient cam. It is therefore of paramount importance to enhance nursing students' clinical reasoning ability. High-fidelity simulation (HFS) is proved to be an effective teaching and learning method, which may also have some advantages over other teaching methods. Methods: The authors retrospectively reviewed the related literature, illustrated the application of high-fidelity simulation teaching method in nursing education, putting the focus on the use of it in teaching with clinical reasoning. Results: The application of high-fidelity simulation to nursing education can simulate the clinical situation, thus to create a safe, continuous and efficient learning environment for students, and it can effectively improve students' clinical reasoning ability. Conclusions: high-fidelity simulation is effective for clinical reasoning teaching in nursing education. The extension of its application in China should be of great value. The relevant further study is suggested focusing on how to overcome its own limitations and have it better applied in nursing education in China.
基金This work was supported by the National Natural Science Foundation of China(62001489)the scientific research planning project of National University of Defense Technology(JS19-04).
文摘Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms.
基金supported by research funding from the Macao Polytechnic Institute(No.RP/ESS-06/2017)。
文摘Objective:This study is aimed to develop student simulated patient(SSP)training content and evaluation indicators,and further explores their validity and reliabilities.Methods:Delphi consultations with 20 nursing exper ts were conducted.The weights of indicators were calculated through the analytic hierarchy process.SSP training was conducted with a high-fidelity nursing simulation.Results:The expert positive coefficients were 0.952 in the first round consultation and 1.00 in the second round consultation.The expert authority coefficient was reported as 0.87.The training included role and responsibility of simulated patient(SP),script interpretation,plot performance,and training for a rater,with a total of 17 indicators.SSP evaluation consisted of disease knowledge,role portrayal,and performance fidelity and since being a rater,it consists of 20 indicators in total.The coordination coefficients of two rounds of consultation ranged from 0.530 to 0.918.The content validity of SSP evaluation indicators was 0.95.The inter-rater reliability was repor ted as 0.866,and the internal consistency established using Cronbach’sαwas 0.727.Conclusions:Students as SPs should have first-hand knowledge and experience within the simulated scenarios.SSP training content and evaluation indicators were determined through the Delphi consensus combined with analytic hierarchy process.The evaluation indicators were valid and reliable,and provided the objective and quantifiable measurements for SSP training in nursing。
基金Supported by the National Natural Science Foundation of China under Grant Nos 11372053,11402031,11221202 and 11172044the Opening Project of the State Key Laboratory of Explosion Science and Technology under Grant No KFJJ14-06M
文摘It is shown that the introduction of thermal effect, zero-point vibration, and phonon anharmonicity to a high quality and first-principle-Sased force field (atomic potential) results in a significant improvement in predict- ing the densities for the α phase crystalline hexahydro-1,3,5-trinitro-l,3,5-triazine (RDX), and derivation of its high-fidelity Hugoniot locus and Mie-Grfineisen equation of state covering a very wide range of pressures and temperatures. This work can be used to efficiently and accurately predict the thermophysical properties of solid explosives over the pressures and temperatures to which they are subjected, which is a long-standing issue in the field of energetic materials.
基金This project was supported by research funding from the Macao Polytechnic Institute(No.RP/ESS-06/2017).
文摘Objective:To evaluate nursing students’assessment and communication skills through an objective structured clinical examination(OSCE)within a high-fidelity simulation using a student-simulated patient(SSP)and analyze the validity,reliability,degree of difficulty,and discriminability of the OSCE.Methods:A descriptive study was conducted at one nursing school in Macao.All scenarios were designed using a high-fidelity simulator combined with SSPs.A convenience sample of 54 baccalaureate nursing students completed the OSCE.The nursing assessment OSCE checklist(NAOC)and the communication evaluation rubric(CER)were used as observational measurements with three-point Likert scales(2=Achieved,1=Partly achieved,0=Not completed/Incorrect).Results:Difficulty coefficients of the exam were 0.63 for nursing assessment skills and 0.56 for communication skills.The discrimination index of the majority items of the NAOC(86.4%)was>0.20,showing a better to good discriminability.The items of the CER had satisfactory indexes of item discrimination(from 0.38 to 0.84).Students received high scores in conducting blood oxygen saturation and cardiac and lung auscultation but low scores in vomiting and diarrhea assessment.Students presented good communication skills in eye contacting and listening,but culture assessment needs to be improved.The students with experiences in simulation or simulated patient(SP)interactions had better assessment and communication skills than students without those experiences.There was a positive relationship between nursing assessment and communication skills(r=0.67,P=0.000).Conclusions:SSPs were involved in enhancing the realism of interactions in simulated scenarios.Nursing students can conduct nursing assessments specific to patient conditions,explain the conditions to the patient,and ensure that the patient remains informed at all times of the precautions to be taken.However,students’cultural awareness and some communication skills need further training.With moderate difficulty and high discrimination index,OSCE showed satisfactory reliability and validity.
文摘Sound recording quality, whether digital or analogue, presupposes true-to-life recording of the original audio signal. Contemporary audio media do not meet the requirements of high-fidelity recording since they do not insufficiently utilize the bandwidth for D/A conversion and sufficient word length. This paper deals with the values of these parameters in high-fidelity recording. The paper presents the results of a research into characteristics of faithful and high-fidelity audio recording considering the frequency range, signal-to-noise ratio and dynamic range.
基金supported by the National Natural Science Foundation of China(61873198 and 62132015 to L.G.,62002275 to Y.Y.,and 61621003 to S.Z.)the National Key ResearchandDevelopment ProgramoCf hina(2019YFA0709501)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16021400 and XDPB17 to S.z.)the Key-Area Research and Development of Guangdong Province(2020B1111190001).
文摘Single-cell Hi-C technology provides an unprecedented opportunity to reveal chromatin structure in individual cells.However,high sequencing cost impedes the generation of biological Hi-C data with high sequencing depths and multiple replicates for downstream analysis.Here,we developed a single-cell Hi-C simulator(scHi-CSim)that generates high-fidelity data for benchmarking.scHi-CSim merges neighboring cells to overcome the sparseness of data,samples interactions in distance-stratified chromosomes to maintain the heterogeneity of single cells,and estimates the empirical distribution of restriction fragments to generate simulated data.We demonstrated that scHi-CSim can generate high-fidelity data by comparing the performance of single-cell clustering and detection of chromosomal high-order structures with raw data.Furthermore,scHi-CSim is flexible to change sequencing depth and the number of simulated replicates.We showed that increasing sequencing depth could improve the accuracy of detecting topologically associating domains.We also used scHi-CSim to generate a series of simulated datasets with different sequencing depths to benchmark scHi-C clustering methods.
基金supported by National Key R&D Program of China(Grant No.2017YFB1103300)National Natural Science Foundation of China(Grant No.51975320)+1 种基金Beijing Municipal Natural Science Foun-dation of China(Grant No.M22011)Research Start-up Funding of Fuzhou University(Grant No.XRC-22062).
文摘High-fidelity simulations of powder bed fusion(PBF)additive manufacturing have made significant progress over the past decade.In this study,an efficient two-dimensional frame was developed for simulating the electron beam PBF process with hundreds of tracks for the direct prediction of the build quality.The applicable parameter range of the developed model was determined by comparing the heat transfer with that in three-dimensional cases.Subsequently,powder deposition and selective melting were coupled for a continuous simulation of the multilayer process.Three powder deposition models were utilized to generate random powder particles,and their effects on the packing structure and the resultant simulated build quality were investigated.The predicted build quality was validated using experimental results from independent studies.By reproducing the building process,the defect development mechanism in a multilayer process was revealed for the coalescence behaviors of randomly distributed powder particles,which also confirmed the importance of simulation at the high-fidelity powder scale.The effects of key process parameters during multilayer and multi-track processes on the build quality were systematically investigated.In particular,the formation statuses of all tracks during the simulated building process were recorded and analyzed statistically,which provided crucial information on the printing process for understanding the building mechanism or performing uncertainty analysis.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 91640119, 31601196, 81330055, 31371508, and 31671540), the Natural Science Foundation of Guangdong Province (2016A030310206 and 2014A030312011), the Science and Technology Planning Project of Guangdong Province (2015B020228002 and 2015A020212005), the Guangzhou Science and Technology Project (201605030012 and 201707010085), and the Fundamental Research Funds for the Central Universities (161gzd13 and 161gpy31). We would also like to acknowledge the support of CA211653, CPRIT RP160462, the Welch Foundation Q-1673, and the C-BASS Shared Resource at the Dan L. Duncan Cancer Center (DLDCC) of Baylor College of Medicine (P30CA125123).
文摘Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease- causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical applicaUon of such approaches. Recently, a base editor (BE) system built on cytidine (C) deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T) efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high- fidelity version of base editor 2 (HF2-BE2), and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.
基金the financial support of the National Natural Science Foundation of China(Nos.51876176 and 51906204)。
文摘Forward Variable Area Bypass Injector(FVABI)is one of key components which contributes to modulate the cycle parameters of Variable Cycle Engine(VCE)under various operation conditions.The modeling method of zero-dimensional FVABI was reviewed and its deficiency was analyzed based on FVABI flow characteristic.In order to improve the accuracy of VCE performance simulation,the high-fidelity modeling method of FVABI was developed based on its working characteristics.Then it was coupled with the zero-dimensional VCE model and the multi-level VCE model was built.The results indicate that the geometric and aerodynamic parameters can affect the interaction between the two airflows and the zero-dimensional FVABI model is too simple to predict the component performance accurately,especially when the FVABI inner bypass is chocked.Based on the performance curves for single bypass mode and the regression model of multi-scale support vector regression for double bypass mode,the high-fidelity model can predict FVABI performance accurately and rapidly.The integration of high-fidelity FVABI model into zerodimensional VCE model can be done by adjusting iterative variables and balance equations.The multi-level model has good convergence and it can predict VCE performance when the FVABI inner bypass is chocked.
基金sponsored by the William RT Oakes Endowment of the Georgia Institute of Technology
文摘Engineering design is undergoing a paradigm shift from design for performance to design for affordability, operability, and durability, seeking multi-objective optimization. To facilitate this transformation, significantly extended design freedom and knowledge must be available in the early design stages. This paper presents a high-fidelity framework for design and optimization of the liquid swirl injectors that are widely used in aerospace propulsion and power-generation systems. The framework assembles a set of techniques, including Design Of Experiment(DOE), high-fidelity Large Eddy Simulations(LES), machine learning, Proper Orthogonal Decomposition(POD)-based Kriging surrogate modeling(emulation), inverse problem optimization, and uncertainty quantification. LES-based simulations can reveal detailed spatiotemporal evolution of flow structures and flame dynamics in a high-fidelity manner, and identify important injector design parameters according to their effects on propellant mixing, flame stabilization, and thermal protection.For a given a space of design parameters, DOE determines the number of design points to perform LES-based simulations. POD-based emulations, trained by the LES database, can effectively explore the design space and deduce an optimal group of design parameters in a turn-around time that is reduced by three orders of magnitude. The accuracy of the emulated results is validated, and the uncertainty of prediction is quantified. The proposed design methodology is expected to profoundly extend the knowledge base and reduce the cost for initial design stages.
基金This work is supported by the Key R&D Program of Zhejiang Province(No.2021C03183)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0506)the National Natural Science Foundation of China(No.2017YFC0307500).
文摘Designing a high-fidelity cutting device is one of the difficulties in hydrate samples pressure-holding transfer.Due to the limitations of the existing mechanical system,there is much damage to the cut surface of hydrate samples,with many chips produced,which seriously affects the quality of samples.In this paper,a new cutting device utilizes two servo motors to achieve a high degree of automation.Using the Archimedes spiral,it achieves low disturbance of the cut surface and provides accurate control of the process.In addition,due to the operation of the sample long-stroke push unit,cutting hydrate samples of any length with almost no chips within a short cutting time can be achieved.Laboratory and sea tests have achieved all design requirements of the equipment and strongly demonstrate its benefit and stability.It is concluded that this new high-fidelity cutting technology is practically efficient.The physical state of the hydrate can be maintained to the greatest extent,and thus the new equipment provides significant support for the exploration and development of hydrate resources.
基金Project supported by the China Postdoctoral Science Foundation (Grant No.2023M732745)the National Natural Science Foundations of China (Grant Nos.61974110 and 62104177)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant Nos.QTZX23022 and JBF211103)the Cooperation Program of XDU– Chongqing IC Innovation Research Institute (Grant No.CQ IRI-2022CXY-Z07)。
文摘Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot match, acoustic holograms pursue the realization of high-resolution complex acoustic fields and gradually tend to high-frequency ultrasound applications. However, conventional continuous phase holograms are limited by three-dimensional(3D) printing size, and the presence of unavoidable small printing errors makes it difficult to achieve acoustic field reconstruction at high frequency accuracy. Here, we present an optimized discrete multi-step phase hologram. It can ensure the reconstruction quality of image with high robustness, and properly lower the requirement for the 3D printing accuracy. Meanwhile, the concept of reconstruction similarity is proposed to refine a measure of acoustic field quality. In addition, the realized complex acoustic field at 20 MHz promotes the application of acoustic holograms at high frequencies and provides a new way to generate high-fidelity acoustic fields.
文摘Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are conducted in prescribed conditions that should be representative of the service installation. In actual project, conditions encountered on site may vary from the test environment and it would be expensive and time consuming to validate each deviation with a physical test. High-fidelity physics-based (HFPB) finite element modeling can provide precise simulations of the behavior of anti-ram bollards. This paper presents the use of HFPB finite element modeling, using LS-DYNA, in an actual project to evaluate the performance of an anti-ram bollard design subjected to various boundary conditions representing the physical conditions encountered on site. The study shows that boundary conditions can have a significant influence on the performance of the anti-ram bollards. This suggests that anti-ram bollards must be designed and engineered according to actual conditions that are found on site. It also shows that HFPB modeling can be an effective tool that supplements physical testing of anti-ram bollards.
文摘Background: Simulation is perceived as an important part to the nursing clinical educational experience since it can offer a safe learning environment for the students’ clinical practice. Objective: The purpose of this study was to explore the Lebanese student’s experience of benefits of high fidelity simulation in nursing education. Design: A qualitative study using open-ended questionnaire. Setting: This study was implemented at private university in Lebanon between January and April 2015. Participants: A purposive sample was sought from those who have a simulated experience. Methods: Qualitative data were collected via interviews and analysed using a thematic approach. Findings: Four major themes were identified: “Bridging Theory to Clinical Practice”, “Developing Critical Thinking and Decision-making”, “Practicing Safely Leads to Enhancing Confidence”, “Teamwork Spirit and students’ motivation to earn and practice more”. Conclusion: Simulation was found to be an acceptable learning strategy for novice nursing students. The use of simulations is a useful and effective learning strategy. Students with a higher positive attitude towards the simulation experience displayed better learning outcomes. Thus, the integration of simulation into the learning experience of nursing students will bridge the gap between theory and practice;enhance their critical thinking and motivation aptitudes along with traditional clinical practice by sparing them a safe milieu.
基金supported by the National Science and Technology Major Project(Grant Nos.2017-V-0016-0068,and J2019-V-0017-0112)the National Natural Science Foundation of China(Grant No.51776011).
文摘The pneumatic probe is widely used for contact measurements in turbomachinery flow field research.However,it inevitably interferes with the original flow field,leading to additional errors,particularly in wake flow fields or transonic regions with significant pressure gradients.This study employed Reynolds-Averaged Navier-Stokes delete and high-fidelity numerical simulation to investigate the impact of an inserted pneumatic probe on the wake flow field of a transonic turbine blade and compared it to the baseline flow field.Results indicate that the probe causes the shock waves premature occurrence in the high subsonic wake region near the turbine blade trailing edge.These shock waves affect vortex shedding by thickening the boundary layer near the trailing edge and changing the shedding pattern from high-frequency-low-energy to low-frequencyhigh-energy.In addition,the extra flow loss is incurred,and the blade's heat transfer characteristic is changed.This research provides a reference for testing experiments in complex transonic flow fields,guiding experimental researchers to minimize instrument interference with the original flow field.
基金supported by the Ministry of Agriculture and Rural Affairs of China,the National Key R&D Program of China(Grant No.2019YFA0802600)the Chinese Academy of Sciences(Grant Nos.ZDBS-LY-SM005 and XDPB17)the National Natural Science Foundation of China(Grant No.31970565).
文摘Next-generation sequencing(NGS),represented by Illumina platforms,has been an essential cornerstone of basic and applied research.However,the sequencing error rate of 1 per 1000 bp(10^(−3))represents a serious hurdle for research areas focusing on rare mutations,such as somatic mosaicism or microbe heterogeneity.By examining the high-fidelity sequencing methods developed in the past decade,we summarized three major factors underlying errors and the corresponding 12 strategies mitigating these errors.We then proposed a novel framework to classify 11 preexisting representative methods according to the corresponding combinatory strategies and identified three trends that emerged during methodological developments.We further extended this analysis to eight long-read sequencing methods,emphasizing error reduction strategies.Finally,we suggest two promising future directions that could achieve comparable or even higher accuracy with lower costs in both NGS and long-read sequencing.
文摘Particle separation from gases is an important unit operation in manifold industrial applications,such as those conducted in environmental protection.For analysis of particle penetration and separation in fiber filters,standard dust particles (Al2O3)were loaded in the gas flow of a filter test facility and deposited within new and uncharged fiber filters.The loaded filters were analyzed by micro-computer tomography and scanning electron microscopy.Three-dimensional tomograms of the samples show an exponential decay of the penetration depth of the particles.This dependency is confirmed by simulations conducted using the discrete element method coupled with computational fluid dynamics within unloaded and loaded fiber structures.Microscale processes of particle separation at the fibers as well as the filtration efficiency and time-dependent filtering process are derived from the simuiations.Local particle clustering in the filter medium and partial filter clogging are thus identified.