Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its ph...Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.展开更多
3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain...3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.展开更多
BACKGROUND 7T cardiac magnetic resonance imaging(MRI)introduces several advantages,as well as some limitations,compared to lower-field imaging.The capabilities of ultra-high field(UHF)MRI have not been fully exploited...BACKGROUND 7T cardiac magnetic resonance imaging(MRI)introduces several advantages,as well as some limitations,compared to lower-field imaging.The capabilities of ultra-high field(UHF)MRI have not been fully exploited in cardiac functional imaging.AIM To optimize 7T cardiac MRI functional imaging without the need for conducting B1 shimming or subject-specific tuning,which improves scan efficiency.In this study,we provide results from phantom and in vivo scans using a multi-channel transceiver modular coil.METHODS We investigated the effects of adding a dielectric pad at different locations next to the imaged region of interest on improving image quality in subjects with different body habitus.We also investigated the effects of adjusting the imaging flip angle in cine and tagging sequences on improving image quality,B1 field homogeneity,signal-to-noise ratio(SNR),blood-myocardium contrast-to-noise ratio(CNR),and tagging persistence throughout the cardiac cycle.RESULTS The results showed the capability of achieving improved image quality with high spatial resolution(0.75 mm×0.75 mm×2 mm),high temporal resolution(20 ms),and increased tagging persistence(for up to 1200 ms cardiac cycle duration)at 7T cardiac MRI after adjusting scan set-up and imaging parameters.Adjusting the imaging flip angle was essential for achieving optimal SNR and myocardium-toblood CNR.Placing a dielectric pad at the anterior left position of the chest resulted in improved B1 homogeneity compared to other positions,especially in subjects with small chest size.CONCLUSION Improved regional and global cardiac functional imaging can be achieved at 7T MRI through simple scan set-up adjustment and imaging parameter optimization,which would allow for more streamlined and efficient UHF cardiac MRI.展开更多
基金supported by the Open Research Fund of State Key Laboratory of Geomechanics and GeotechnicalEngineering, IRSM, CAS (Grant No. Z017002)the National Natural Science Foundation of China (Grant Nos. 41872210 and 41274111)financial support from the China-Australia Geological Storage of CO_2 (CAGS) Project funded by the Australian Government under the auspices of the China-Australia Joint Coordination Group on Clean Coal Technology
文摘Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.
基金supported by the National Natural Science Foundation of China,No.81141013a grant for Talents in Beijing,No.2011D003034000019
文摘3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.
文摘BACKGROUND 7T cardiac magnetic resonance imaging(MRI)introduces several advantages,as well as some limitations,compared to lower-field imaging.The capabilities of ultra-high field(UHF)MRI have not been fully exploited in cardiac functional imaging.AIM To optimize 7T cardiac MRI functional imaging without the need for conducting B1 shimming or subject-specific tuning,which improves scan efficiency.In this study,we provide results from phantom and in vivo scans using a multi-channel transceiver modular coil.METHODS We investigated the effects of adding a dielectric pad at different locations next to the imaged region of interest on improving image quality in subjects with different body habitus.We also investigated the effects of adjusting the imaging flip angle in cine and tagging sequences on improving image quality,B1 field homogeneity,signal-to-noise ratio(SNR),blood-myocardium contrast-to-noise ratio(CNR),and tagging persistence throughout the cardiac cycle.RESULTS The results showed the capability of achieving improved image quality with high spatial resolution(0.75 mm×0.75 mm×2 mm),high temporal resolution(20 ms),and increased tagging persistence(for up to 1200 ms cardiac cycle duration)at 7T cardiac MRI after adjusting scan set-up and imaging parameters.Adjusting the imaging flip angle was essential for achieving optimal SNR and myocardium-toblood CNR.Placing a dielectric pad at the anterior left position of the chest resulted in improved B1 homogeneity compared to other positions,especially in subjects with small chest size.CONCLUSION Improved regional and global cardiac functional imaging can be achieved at 7T MRI through simple scan set-up adjustment and imaging parameter optimization,which would allow for more streamlined and efficient UHF cardiac MRI.