AIM: To establish if a distinct urinary metabolic profile could be identified in Bangladeshi hepatitis-B hepatocellular carcinoma (HCC) patients compared to cirrhosis patients and controls.METHODS: Urine samples from ...AIM: To establish if a distinct urinary metabolic profile could be identified in Bangladeshi hepatitis-B hepatocellular carcinoma (HCC) patients compared to cirrhosis patients and controls.METHODS: Urine samples from 42 Bangladeshi patients with HCC (39 patients with hepatitis-B HCC), 47 with cirrhosis on a background of hepatitis B, 46 with chronic hepatitis B, and seven ethnically-matched healthy controls were analyzed using nuclear magnetic resonance (NMR) spectroscopy. A full dietary and medication history was recorded for each subject. The urinary NMR data were analyzed using principal component analysis (PCA) and orthogonal partial least squared discriminant analysis (OPLS-DA) techniques. Differences in relative signal levels of the most discriminatory metabolites identified by PCA and OPLS-DA were compared between subject groups using an independent samples Kruskal-Wallis one-way analysis of variance (ANOVA) test with all pairwise multiple comparisons. Within the patient subgroups, the Mann-Whitney U test was used to compare metabolite levels depending on hepatitis B e-antigen (HBeAg) status and treatment with anti-viral therapy. A Benjamini-Hochberg adjustment was applied to acquire the level of significance for multiple testing, with a declared level of statistical significance of P < 0.05.RESULTS: There were significant differences in age (P < 0.001), weight (P < 0.001), and body mass index (P < 0.001) across the four clinical subgroups. Serum alanine aminotransferase (ALT) was significantly higher in the HCC group compared to controls (P < 0.001); serum α-fetoprotein was generally markedly elevated in HCC compared to controls; and serum creatinine levels were significantly reduced in the HCC group compared to the cirrhosis group (P = 0.004). A three-factor PCA scores plot showed clustering of the urinary NMR spectra from the four subgroups. Metabolites that contributed to the discrimination between the subgroups included acetate, creatine, creatinine, dimethyamine (DMA), formate, glycine, hippurate, and trimethylamine-N-oxide (TMAO). A comparison of relative metabolite levels confirmed that carnitine was significantly increased in HCC; and creatinine, hippurate, and TMAO were significantly reduced in HCC compared to the other subgroups. HBeAg negative patients showed a significant increase in creatinine (P = 0.001) compared to HBeAg positive patients in the chronic hepatitis B subgroup, whilst HBeAg negative patients showed a significant decrease in DMA (P = 0.004) in the cirrhosis subgroup compared to HBeAg positive patients. There were no differences in metabolite levels in HCC patients who did or did not receive antiviral treatment.CONCLUSION: Urinary NMR changes in Bangladeshi HCC were identified, corroborating previous findings from Egypt and West Africa. These findings could form the basis for the development of a cost-effective HCC dipstick screening test.展开更多
Eight metabolites of brodimoprim (BDP) in rat urine were detected by NMR and ESIMS/MS. They were demethyl-BDP glucuronide, demethyl-BDP sulfurate, demethyl-BDP glucuronide sulfurate, alpha -hydroxyl-BDP, alpha -hydrox...Eight metabolites of brodimoprim (BDP) in rat urine were detected by NMR and ESIMS/MS. They were demethyl-BDP glucuronide, demethyl-BDP sulfurate, demethyl-BDP glucuronide sulfurate, alpha -hydroxyl-BDP, alpha -hydroxyl-BDP glucuronide, BDP sulfurate, N-oxide-BDP sulfurate, and alpha -hydroxyl-N-oxide-BDP sulfurate. All the sulfurates are reported for the first time.展开更多
Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract lipid-soluble metabol...Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract lipid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Fur- thermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were as- signed in the acquired spectra according to the chemical shift, and the extraction efficiency of dif- ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain rela- tively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase ex- traction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.展开更多
A series of trans-4, 5-disubstituted -γ-butyrolactones are found to assume two different envelope conformations by means of nuclear magnetic resonance spectroscopy.
In this study, Si-doped Cu<sub>2</sub>ZnSnS<sub>4</sub> compounds (Cu<sub>2</sub>ZnSn<sub>1-x</sub>Si<sub>x</sub>S<sub>4</sub>, 0 ≤ x ≤ 1) were...In this study, Si-doped Cu<sub>2</sub>ZnSnS<sub>4</sub> compounds (Cu<sub>2</sub>ZnSn<sub>1-x</sub>Si<sub>x</sub>S<sub>4</sub>, 0 ≤ x ≤ 1) were prepared by solid state reaction method for use of materials for photovoltaic cells. The structural and spectroscopic properties of the as-prepared compounds were studied by X-ray diffraction (XRD), <sup>119</sup>Sn, <sup>29</sup>Si and <sup>65</sup>Cu Magic Angle Spinning nuclear magnetic resonance (MAS NMR) and Raman spectroscopy. The Si-substitution in the Sn-site induces three different types of XRD patterns which depend largely on the Si content in the compound. For 0 ≤ x ≤ 0.5, XRD analysis reveals the presence of a pure tetragonal phase of solid solution with I-42m as a space group. Mixed tetragonal and orthorhombic phases were observed for 0.5 < x < 0.8, followed by a pure orthorhombic structure with a space group Pmn2<sub>1</sub> at high content of Si (x ≥ 0.8). <sup>119</sup>Sn MAS NMR spectra show the presence of Sn/Si disorder as a function of the Si content. The <sup>65</sup>Cu MAS NMR spectra of the quadratic solid solution confirm the presence of the two copper sites (Cu-2a and Cu-2c) at 780 ppm while in the case of the orthorhombic solid solution samples, a very broad band is observed. The optical properties were investigated of all compounds by UV-Vis diffuse reflectance and the obtained optical band gap values (1.31 to 2.43 eV) confirm a semiconductor character.展开更多
3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain...3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.展开更多
Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its ph...Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.展开更多
AIM To develop metabonomic models(MMs), using 1 H nuclear magnetic resonance(NMR) spectra of serum, to predict significant liver fibrosis(SF: Metavir ≥ F2), advanced liver fibrosis(AF: METAVIR ≥ F3) and cirrhosis(C:...AIM To develop metabonomic models(MMs), using 1 H nuclear magnetic resonance(NMR) spectra of serum, to predict significant liver fibrosis(SF: Metavir ≥ F2), advanced liver fibrosis(AF: METAVIR ≥ F3) and cirrhosis(C: METAVIR = F4 or clinical cirrhosis) in chronic hepatitis C(CHC) patients. Additionally, to compare the accuracy of the MMs with the aspartate aminotransferase to platelet ratio index(APRI) and fibrosis index based on four factors(FIB-4). METHODS Sixty-nine patients who had undergone biopsy in the previous 12 mo or had clinical cirrhosis were included. The presence of any other liver disease was a criterion for exclusion. The MMs, constructed using partial least squares discriminant analysis and linear discriminant analysis formalisms, were tested by cross-validation, considering SF, AF and C. RESULTS Results showed that forty-two patients(61%) presented SF, 28(40%) AF and 18(26%) C. The MMs showed sensitivity and specificity of 97.6% and 92.6% to predict SF; 96.4% and 95.1% to predict AF; and 100% and 98.0% to predict C. Besides that, the MMs correctly classified all 27(39.7%) and 25(38.8%) patients with intermediate values of APRI and FIB-4, respectively. CONCLUSION The metabonomic strategy performed excellently in predicting significant and advanced liver fibrosis in CHC patients, including those in the gray zone of APRI and FIB-4, which may contribute to reducing the need for these patients to undergo liver biopsy.展开更多
Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification.It is an"omics"technique that...Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification.It is an"omics"technique that is situated downstream of genomics,transcriptomics and proteomics.Metabolomics is recognized as a promising technique in the field of systems biology for the evaluation of global metabolic changes.During the last decade,metabolomics approaches have become widely used in the study of liver diseases for the detection of early biomarkers and altered metabolic pathways.It is a powerful technique to improve our pathophysiological knowledge of various liver diseases.It can be a useful tool to help clinicians in the diagnostic process especially to distinguish malignant and non-malignant liver disease as well as to determine the etiology or severity of the liver disease.It can also assess therapeutic response or predict drug induced liver injury.Nevertheless,the usefulness of metabolomics is often not understood by clinicians,especially the concept of metabolomics profiling or fingerprinting.In the present work,after a concise description of the different techniques and processes used in metabolomics,we will review the main research on this subject by focusing specifically on in vitro proton nuclear magnetic resonance spectroscopy based metabolomics approaches in human studies.We will first consider the clinical point of view enlighten physicians on this new approach and emphasis its future use in clinical"routine".展开更多
Substituent, temperature and solvent effects on tautomeric equilibria in several β-ketoamides have been investigated by means of nuclear magnetic resonance spectroscopy (NMR). Keto-enol equilibrium predominates over ...Substituent, temperature and solvent effects on tautomeric equilibria in several β-ketoamides have been investigated by means of nuclear magnetic resonance spectroscopy (NMR). Keto-enol equilibrium predominates over the amide-imidol one. The relative stability of the individual tautomers and the corresponding equilibrium shifts are explained considering electronic and steric effects and tautomer stabilization via internal hydrogen bonds. In solution, these compounds exist mainly as ketoamide and Z-enolamide tautomers, both presenting intramolecular hydrogen bonds.展开更多
Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existen...Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.展开更多
Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-an...Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1H NMRS) can provide important information on tumor biology and metabolism.These metabolic fingerprints can then be used for tumor classification and grading,with great potential value for tumor diagnosis.We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies,including two astrocytomas (grade I),12 astrocytomas (grade II),eight anaplastic astrocytomas (grade III),three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS 1H NMRS.The results were correlated with pathological features using multivariate data analysis,including principal component analysis (PCA).There were significant differences in the levels of N-acetyl-aspartate (NAA),creatine,myo-inositol,glycine and lactate between tumors of different grades (P<0.05).There were also significant differences in the ratios of NAA/creatine,lactate/creatine,myo-inositol/creatine,glycine/creatine,scyllo-inositol/creatine and alanine/creatine (P<0.05).A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%.HRMAS 1H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.展开更多
The determination method of chlorogenic acid in traditional Chinese prescription Shuanghuanglian capsule was established by using quantitative nuclear magnetic resonance spectroscopy(q NMR) in combination with solid p...The determination method of chlorogenic acid in traditional Chinese prescription Shuanghuanglian capsule was established by using quantitative nuclear magnetic resonance spectroscopy(q NMR) in combination with solid phase extraction(SPE). As the capsule’s main active component, chlorogenic acid comes from the extraction of Chinese herb medicine Flos Lonicerae. The chlorogenic acid in capsule was ultrasonically extracted at room temperature using pure water as solvent. The extracting solution was enriched and cleaned using HC-C18 SPE cartridge. The effect of ultrasonic extraction, sample pretreatment conditions via SPE and q NMR experimental conditions were investigated. The q NMR experiment conditions were selected using deuterated DMSO as solvent, calibrated 1,4-phthalaldehyde as internal standard, and P1(pulse width) = 14.4 μs, d1(pulse delay time) = 1 s, NS(number of scan) = 512. The 1 H NMR peaks of δ 6.138–6.182(H-8’, d, 1 H) of chlorogenic acid was chosen as the quantitative peaks. Method validation was performed, including precision(the intra-day RSD = 1.2% and the inter-day RSD = 1.5%), linearity(correlation coefficient r>0.9999), LOD(0.0017 mg/g) and LOQ(0.079 mg/g). The recovery of the SPE-q NMR was within the range of 100.2%–103.2%. The result showed that the method was stable, accurate and reliabile. Determined by the method, the chlorogenic acid in a real Shuanghuanglian capsule was within the range of 9.68–10.35 mg/g.展开更多
Phar.Eur.Herbal Drug(HD)monographs state which aspects have to be considered for quality assurance through the relevant chapters'Definition'.'Characters','Identification','Tests',and...Phar.Eur.Herbal Drug(HD)monographs state which aspects have to be considered for quality assurance through the relevant chapters'Definition'.'Characters','Identification','Tests',and'Assay'.Identification of botanical material is achieved by macroscopic and microscopic morphology,generally examined by a trained expert.Content or assay is the most difficult area of展开更多
Objective:To investigate the application of nuclear magnetic resonance(NMR)spectroscopy in the exploration of metabolic differences and potential biomarkers in rats with polycystic ovary syndrome(PCOS).Methods:PCOS mo...Objective:To investigate the application of nuclear magnetic resonance(NMR)spectroscopy in the exploration of metabolic differences and potential biomarkers in rats with polycystic ovary syndrome(PCOS).Methods:PCOS model was established by subcutaneous injection of deoxy-epiandrosterone(DHEA)in 30 rats randomly selected from sixty 23-day-old SPF female SD rats and set as PCOS group,and the other 30 rats were subcutaneously injected with oil and set as oil group,PCOS model was successfully established by 20 days of injection in both groups,and blood samples were taken for biochemical detection and NMR detection analysis.At the same time,the body weight,ovarian weight and HE staining results of rats in both groups were observed.Results:Compared with the oil group,the rats in the PCOS group had higher body weight,ovarian weight and serum LH,FPG,T,E_(2)and HOMA levels,and lower serum FSH and INS levels(P<0.05).In the oil group,a large number of corpus luteum,follicles at different stages of development and multi-layered granulosa cells were observed under microscope after HE staining;In PCOS group,corpus luteum formation was only visible in some ovaries after HE staining,and all of them showed a higher number of cystic dilated follicles,thickened follicular membrane layer and less granulosa cell layer.The PCA score map of serum NMR profiles of the rats in the two groups showed that the samples were separated between the PCOS group and the oil group but the samples were aggregated within the group,and there were differences in blood metabolism between the PCOS model constructed by surface DHEA and the rats in the oil group.A total of 70 metabolites were detected in the serum samples of rats in the two groups by NMR technique,and 31 of them were different between the two groups,which can be classified into glucose,lipid,and and amino acid.There were significant differences in three metabolites,including isoleucine,valine,and creatine(P<0.01).Conclusion:There are differences in carbohydrate,lipid and amino acid metabolism between normal rats and PCOS rats,among which the levels of serum isoleucine,valine and creatine can be used as important biomarkers in the diagnosis of PCOS.展开更多
以蔗糖、麦芽糖醇及二者复配的三元溶液为渗透溶液,探究渗透脱水处理对黄桃果块质构特性、介电特性、细胞壁多糖含量以及微观结构的变化,并利用核磁共振氢谱(1H nuclear magnetic resonance,1H NMR)技术测定了可溶性糖含量的变化,明确...以蔗糖、麦芽糖醇及二者复配的三元溶液为渗透溶液,探究渗透脱水处理对黄桃果块质构特性、介电特性、细胞壁多糖含量以及微观结构的变化,并利用核磁共振氢谱(1H nuclear magnetic resonance,1H NMR)技术测定了可溶性糖含量的变化,明确麦芽糖醇和蔗糖的协同作用在渗透脱水过程中对黄桃果块特性的改善作用。结果表明:相较于对照组,SM14(蔗糖、麦芽糖醇质量比1∶4的溶液)显著降低黄桃果块的硬度、咀嚼性和黏附性。渗透脱水处理导致黄桃果块的阻抗和有效电阻显著降低,同时诱导静电容量显著增加,表明渗透脱水可能作用于细胞壁多糖而使果肉细胞特性改变。1H NMR检测结果发现,与蔗糖组相比,三元渗透液处理显著降低了黄桃果块组织中蔗糖的含量,其中SM14处理组蔗糖信号强度仅为19803.9±156.00,麦芽糖醇信号强度为54934.9±1239.11。此外,相比较对照组,SM14组水溶性果胶和鳌合性果胶含量均显著增加,分别为(26.63±1.80)mg/g和(21.59±0.71)mg/g,碱溶性果胶含量显著降低,为(27.24±0.46)mg/g。微观结构观察发现,SM14处理组细胞圆润且完整度较高,塌陷程度低,细胞壁厚度明显增加,这可能是由于蔗糖与麦芽糖醇之间的交互作用有对细胞的协同保护作用。因此,蔗糖与麦芽糖醇复配的三元渗透溶液可以有效地改善二元渗透脱水导致的黄桃果块品质劣变等问题,同时拓宽了糖醇的应用场景。展开更多
文摘AIM: To establish if a distinct urinary metabolic profile could be identified in Bangladeshi hepatitis-B hepatocellular carcinoma (HCC) patients compared to cirrhosis patients and controls.METHODS: Urine samples from 42 Bangladeshi patients with HCC (39 patients with hepatitis-B HCC), 47 with cirrhosis on a background of hepatitis B, 46 with chronic hepatitis B, and seven ethnically-matched healthy controls were analyzed using nuclear magnetic resonance (NMR) spectroscopy. A full dietary and medication history was recorded for each subject. The urinary NMR data were analyzed using principal component analysis (PCA) and orthogonal partial least squared discriminant analysis (OPLS-DA) techniques. Differences in relative signal levels of the most discriminatory metabolites identified by PCA and OPLS-DA were compared between subject groups using an independent samples Kruskal-Wallis one-way analysis of variance (ANOVA) test with all pairwise multiple comparisons. Within the patient subgroups, the Mann-Whitney U test was used to compare metabolite levels depending on hepatitis B e-antigen (HBeAg) status and treatment with anti-viral therapy. A Benjamini-Hochberg adjustment was applied to acquire the level of significance for multiple testing, with a declared level of statistical significance of P < 0.05.RESULTS: There were significant differences in age (P < 0.001), weight (P < 0.001), and body mass index (P < 0.001) across the four clinical subgroups. Serum alanine aminotransferase (ALT) was significantly higher in the HCC group compared to controls (P < 0.001); serum α-fetoprotein was generally markedly elevated in HCC compared to controls; and serum creatinine levels were significantly reduced in the HCC group compared to the cirrhosis group (P = 0.004). A three-factor PCA scores plot showed clustering of the urinary NMR spectra from the four subgroups. Metabolites that contributed to the discrimination between the subgroups included acetate, creatine, creatinine, dimethyamine (DMA), formate, glycine, hippurate, and trimethylamine-N-oxide (TMAO). A comparison of relative metabolite levels confirmed that carnitine was significantly increased in HCC; and creatinine, hippurate, and TMAO were significantly reduced in HCC compared to the other subgroups. HBeAg negative patients showed a significant increase in creatinine (P = 0.001) compared to HBeAg positive patients in the chronic hepatitis B subgroup, whilst HBeAg negative patients showed a significant decrease in DMA (P = 0.004) in the cirrhosis subgroup compared to HBeAg positive patients. There were no differences in metabolite levels in HCC patients who did or did not receive antiviral treatment.CONCLUSION: Urinary NMR changes in Bangladeshi HCC were identified, corroborating previous findings from Egypt and West Africa. These findings could form the basis for the development of a cost-effective HCC dipstick screening test.
文摘Eight metabolites of brodimoprim (BDP) in rat urine were detected by NMR and ESIMS/MS. They were demethyl-BDP glucuronide, demethyl-BDP sulfurate, demethyl-BDP glucuronide sulfurate, alpha -hydroxyl-BDP, alpha -hydroxyl-BDP glucuronide, BDP sulfurate, N-oxide-BDP sulfurate, and alpha -hydroxyl-N-oxide-BDP sulfurate. All the sulfurates are reported for the first time.
基金supported by the Key Program of the National Natural Science Foundation of China,No.30930027the National Natural Science Foundation of China,No.60971075the Foundation for Basic and Clinical Medicine (2010) of Shantou University Medical College,China
文摘Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract lipid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Fur- thermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were as- signed in the acquired spectra according to the chemical shift, and the extraction efficiency of dif- ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain rela- tively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase ex- traction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.
文摘A series of trans-4, 5-disubstituted -γ-butyrolactones are found to assume two different envelope conformations by means of nuclear magnetic resonance spectroscopy.
文摘In this study, Si-doped Cu<sub>2</sub>ZnSnS<sub>4</sub> compounds (Cu<sub>2</sub>ZnSn<sub>1-x</sub>Si<sub>x</sub>S<sub>4</sub>, 0 ≤ x ≤ 1) were prepared by solid state reaction method for use of materials for photovoltaic cells. The structural and spectroscopic properties of the as-prepared compounds were studied by X-ray diffraction (XRD), <sup>119</sup>Sn, <sup>29</sup>Si and <sup>65</sup>Cu Magic Angle Spinning nuclear magnetic resonance (MAS NMR) and Raman spectroscopy. The Si-substitution in the Sn-site induces three different types of XRD patterns which depend largely on the Si content in the compound. For 0 ≤ x ≤ 0.5, XRD analysis reveals the presence of a pure tetragonal phase of solid solution with I-42m as a space group. Mixed tetragonal and orthorhombic phases were observed for 0.5 < x < 0.8, followed by a pure orthorhombic structure with a space group Pmn2<sub>1</sub> at high content of Si (x ≥ 0.8). <sup>119</sup>Sn MAS NMR spectra show the presence of Sn/Si disorder as a function of the Si content. The <sup>65</sup>Cu MAS NMR spectra of the quadratic solid solution confirm the presence of the two copper sites (Cu-2a and Cu-2c) at 780 ppm while in the case of the orthorhombic solid solution samples, a very broad band is observed. The optical properties were investigated of all compounds by UV-Vis diffuse reflectance and the obtained optical band gap values (1.31 to 2.43 eV) confirm a semiconductor character.
基金supported by the National Natural Science Foundation of China,No.81141013a grant for Talents in Beijing,No.2011D003034000019
文摘3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.
基金supported by the Open Research Fund of State Key Laboratory of Geomechanics and GeotechnicalEngineering, IRSM, CAS (Grant No. Z017002)the National Natural Science Foundation of China (Grant Nos. 41872210 and 41274111)financial support from the China-Australia Geological Storage of CO_2 (CAGS) Project funded by the Australian Government under the auspices of the China-Australia Joint Coordination Group on Clean Coal Technology
文摘Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.
文摘AIM To develop metabonomic models(MMs), using 1 H nuclear magnetic resonance(NMR) spectra of serum, to predict significant liver fibrosis(SF: Metavir ≥ F2), advanced liver fibrosis(AF: METAVIR ≥ F3) and cirrhosis(C: METAVIR = F4 or clinical cirrhosis) in chronic hepatitis C(CHC) patients. Additionally, to compare the accuracy of the MMs with the aspartate aminotransferase to platelet ratio index(APRI) and fibrosis index based on four factors(FIB-4). METHODS Sixty-nine patients who had undergone biopsy in the previous 12 mo or had clinical cirrhosis were included. The presence of any other liver disease was a criterion for exclusion. The MMs, constructed using partial least squares discriminant analysis and linear discriminant analysis formalisms, were tested by cross-validation, considering SF, AF and C. RESULTS Results showed that forty-two patients(61%) presented SF, 28(40%) AF and 18(26%) C. The MMs showed sensitivity and specificity of 97.6% and 92.6% to predict SF; 96.4% and 95.1% to predict AF; and 100% and 98.0% to predict C. Besides that, the MMs correctly classified all 27(39.7%) and 25(38.8%) patients with intermediate values of APRI and FIB-4, respectively. CONCLUSION The metabonomic strategy performed excellently in predicting significant and advanced liver fibrosis in CHC patients, including those in the gray zone of APRI and FIB-4, which may contribute to reducing the need for these patients to undergo liver biopsy.
文摘Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification.It is an"omics"technique that is situated downstream of genomics,transcriptomics and proteomics.Metabolomics is recognized as a promising technique in the field of systems biology for the evaluation of global metabolic changes.During the last decade,metabolomics approaches have become widely used in the study of liver diseases for the detection of early biomarkers and altered metabolic pathways.It is a powerful technique to improve our pathophysiological knowledge of various liver diseases.It can be a useful tool to help clinicians in the diagnostic process especially to distinguish malignant and non-malignant liver disease as well as to determine the etiology or severity of the liver disease.It can also assess therapeutic response or predict drug induced liver injury.Nevertheless,the usefulness of metabolomics is often not understood by clinicians,especially the concept of metabolomics profiling or fingerprinting.In the present work,after a concise description of the different techniques and processes used in metabolomics,we will review the main research on this subject by focusing specifically on in vitro proton nuclear magnetic resonance spectroscopy based metabolomics approaches in human studies.We will first consider the clinical point of view enlighten physicians on this new approach and emphasis its future use in clinical"routine".
文摘Substituent, temperature and solvent effects on tautomeric equilibria in several β-ketoamides have been investigated by means of nuclear magnetic resonance spectroscopy (NMR). Keto-enol equilibrium predominates over the amide-imidol one. The relative stability of the individual tautomers and the corresponding equilibrium shifts are explained considering electronic and steric effects and tautomer stabilization via internal hydrogen bonds. In solution, these compounds exist mainly as ketoamide and Z-enolamide tautomers, both presenting intramolecular hydrogen bonds.
基金supported by the National Natural Science Foundation of China(41872174 and 42072189)the Program for Innovative Research Team(in Science and Technology)in the Universities of Henan Province,China(21IRTSTHN007)the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(T2020-4)。
文摘Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20573132 and 20575074)China Postdoctoral Science Foundation (Grant No. 20090450065)State Key Laboratory of Mag-netic Resonance and Atomic and Molecular Physics (Grant No. T152805)
文摘Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1H NMRS) can provide important information on tumor biology and metabolism.These metabolic fingerprints can then be used for tumor classification and grading,with great potential value for tumor diagnosis.We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies,including two astrocytomas (grade I),12 astrocytomas (grade II),eight anaplastic astrocytomas (grade III),three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS 1H NMRS.The results were correlated with pathological features using multivariate data analysis,including principal component analysis (PCA).There were significant differences in the levels of N-acetyl-aspartate (NAA),creatine,myo-inositol,glycine and lactate between tumors of different grades (P<0.05).There were also significant differences in the ratios of NAA/creatine,lactate/creatine,myo-inositol/creatine,glycine/creatine,scyllo-inositol/creatine and alanine/creatine (P<0.05).A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%.HRMAS 1H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.
基金National Natural Science Foundation of China(Grant No.31671928)Natural Science Foundation of Shanghai(Grant No.15ZR1440800).
文摘The determination method of chlorogenic acid in traditional Chinese prescription Shuanghuanglian capsule was established by using quantitative nuclear magnetic resonance spectroscopy(q NMR) in combination with solid phase extraction(SPE). As the capsule’s main active component, chlorogenic acid comes from the extraction of Chinese herb medicine Flos Lonicerae. The chlorogenic acid in capsule was ultrasonically extracted at room temperature using pure water as solvent. The extracting solution was enriched and cleaned using HC-C18 SPE cartridge. The effect of ultrasonic extraction, sample pretreatment conditions via SPE and q NMR experimental conditions were investigated. The q NMR experiment conditions were selected using deuterated DMSO as solvent, calibrated 1,4-phthalaldehyde as internal standard, and P1(pulse width) = 14.4 μs, d1(pulse delay time) = 1 s, NS(number of scan) = 512. The 1 H NMR peaks of δ 6.138–6.182(H-8’, d, 1 H) of chlorogenic acid was chosen as the quantitative peaks. Method validation was performed, including precision(the intra-day RSD = 1.2% and the inter-day RSD = 1.5%), linearity(correlation coefficient r>0.9999), LOD(0.0017 mg/g) and LOQ(0.079 mg/g). The recovery of the SPE-q NMR was within the range of 100.2%–103.2%. The result showed that the method was stable, accurate and reliabile. Determined by the method, the chlorogenic acid in a real Shuanghuanglian capsule was within the range of 9.68–10.35 mg/g.
文摘Phar.Eur.Herbal Drug(HD)monographs state which aspects have to be considered for quality assurance through the relevant chapters'Definition'.'Characters','Identification','Tests',and'Assay'.Identification of botanical material is achieved by macroscopic and microscopic morphology,generally examined by a trained expert.Content or assay is the most difficult area of
文摘Objective:To investigate the application of nuclear magnetic resonance(NMR)spectroscopy in the exploration of metabolic differences and potential biomarkers in rats with polycystic ovary syndrome(PCOS).Methods:PCOS model was established by subcutaneous injection of deoxy-epiandrosterone(DHEA)in 30 rats randomly selected from sixty 23-day-old SPF female SD rats and set as PCOS group,and the other 30 rats were subcutaneously injected with oil and set as oil group,PCOS model was successfully established by 20 days of injection in both groups,and blood samples were taken for biochemical detection and NMR detection analysis.At the same time,the body weight,ovarian weight and HE staining results of rats in both groups were observed.Results:Compared with the oil group,the rats in the PCOS group had higher body weight,ovarian weight and serum LH,FPG,T,E_(2)and HOMA levels,and lower serum FSH and INS levels(P<0.05).In the oil group,a large number of corpus luteum,follicles at different stages of development and multi-layered granulosa cells were observed under microscope after HE staining;In PCOS group,corpus luteum formation was only visible in some ovaries after HE staining,and all of them showed a higher number of cystic dilated follicles,thickened follicular membrane layer and less granulosa cell layer.The PCA score map of serum NMR profiles of the rats in the two groups showed that the samples were separated between the PCOS group and the oil group but the samples were aggregated within the group,and there were differences in blood metabolism between the PCOS model constructed by surface DHEA and the rats in the oil group.A total of 70 metabolites were detected in the serum samples of rats in the two groups by NMR technique,and 31 of them were different between the two groups,which can be classified into glucose,lipid,and and amino acid.There were significant differences in three metabolites,including isoleucine,valine,and creatine(P<0.01).Conclusion:There are differences in carbohydrate,lipid and amino acid metabolism between normal rats and PCOS rats,among which the levels of serum isoleucine,valine and creatine can be used as important biomarkers in the diagnosis of PCOS.