For the purpose of enhancing air convection and controlling solar radiation, a new crushed-rock slope embankment design combined with a sun-shade measure is proposed. A newly designed embankment was constructed in the...For the purpose of enhancing air convection and controlling solar radiation, a new crushed-rock slope embankment design combined with a sun-shade measure is proposed. A newly designed embankment was constructed in the Tuotuohe section of the Qinghai-Tibet Railway and a field-testing experiment was carried out to determine its convection and temperature characteristics. The results show that distinct air convection occurred in the crushed-rock layer of the new embankment, especially in cold seasons, which was enhanced when it flowed upwards along the slope. This preliminarily indicated that the new design of the embankment slope was good for reinforcing air convection in the crushed-rock layer. The frequent fluctuations of the convection speed and the environmental wind speed were in good agreement, suggesting that the convection in the crushed rock primarily came from the ambient wind. It was also preliminarily determined that the new embankment had a better cooling effect and sun-shade effect for decreasing the temperature of the embankment slope compared with a traditional crushed-rock slope embankment, and the mean temperature difference between them was up to 1.7 °C. The mean annual temperature at the bottom boundary of the crushed-rock layer was obviously lower than that at the top boundary, and heat flux calculation showed that the shallow soil beneath the embankment slope was weakly releasing heat, all of which indicated that the new embankment slope design was beneficial to the thermal stability of the embankment. This study is helpful in providing some references for improved engineering design and maintenance of roadbeds in permafrost regions.展开更多
Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafros...Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafrost embankment design in frozen ground regions. The prediction may be further complicated due to the inherent uncertainties of material properties. Hence, stochastic analyses should be conducted. Firstly, Karhunen-Loeve expansion is applied to attain the random fields for hydraulic and thermal conductions. Next, the mixed-form modified Richards equation for mass transfer (i.e., mass equation) and the heat transport equation for heat transient flow in a variably saturated frozen soil are combined into one equation with temperature unknown. Furthermore, the finite element formulation for the coupled thermal-hydraulic fields is derived. Based on the random fields, the stochastic finite element analyses on stability of embankment are carried out. Numerical results show that stochastic analyses of embankment stability may provide a more rational picture for the distribution of factors of safety (FOS), which is definitely useful for embankment design in frozen ground regions.展开更多
In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of th...In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of the particle micro parameters on the macroscopic characteristics of cohesive soil and calibrate the micro parameters of DEM model on this basis. Embankment slope stability analysis was carried out by strength reduction and gravity increase method, it is shown that the safety factor obtained by strength reduction method is more conservative, and the arc-shaped feature of the sliding surface under the gravity increase method is more obvious. Throughout the progressive failure process, the failure trends, maximum displacements, and velocity changes obtained by the two methods were consistent. When slope was destroyed, the upper part was cracked, the middle part was sheared, and the lower part was destroyed by extrusion. The conclusions of this paper can be applied to the safety factor calculation of cohesive soil slopes and the analysis of the instability process.展开更多
Permafrost (perennially frozen ground) appears widely in the Golmud-Lhasa section of the Qinghai-Tibet railway and is characterized by high ground temperature (≥1℃) and massive ground ice. Under the scenarios of...Permafrost (perennially frozen ground) appears widely in the Golmud-Lhasa section of the Qinghai-Tibet railway and is characterized by high ground temperature (≥1℃) and massive ground ice. Under the scenarios of global warming and human activity, the permafrost under the railway will gradually thaw and the massive ground ice will slowly melt, resulting in some thaw settlement hazards, which mainly include longitudinal and lateral cracks, and slope failure. The crushed rock layer has a thermal semiconductor effect under the periodic fluctuation of natural air. It can be used to lower the temperature of the underlying permafrost along the Qinghai-Tibet railway, and mitigate the thaw settlement hazards of the subgrade. In the present paper, the daily and annual changes in the thermal characteristics of the embankment with crushed rock side slope (ECRSS) were quantitatively simulated using the numerical method to study the cooling effect of the crushed rock layer and its mitigative ability. The results showed that the ECRSS absorbed some heat in the daytime in summer, but part of it was released at night, which accounted for approximately 20% of that absorbed. Within a year, it removed more heat from the railway subgrade in winter than that absorbed in summer. It can store approximately 20% of the "cold" energy in subgrade. Therefore, ECRSS is a better measure to mitigate thaw settlement hazards to the railway.展开更多
An evaluation method for the seismic stability of embankment slope was presented based on catastrophe theory. Seven control factors, including internal frictional angle, cohesion force, slope height, slope angle, surf...An evaluation method for the seismic stability of embankment slope was presented based on catastrophe theory. Seven control factors, including internal frictional angle, cohesion force, slope height, slope angle, surface gradients, peak acceleration, and distance to fault were selected for analysis of multi-level objective decomposition. According to the normalization formula and the fuzzy subject function produced by combination of catastrophe theory and fuzzy math, a recursive calculation was carried out to obtain a catastrophic affiliated functional value, which can be used to evaluate the seismic stability of embankment slope. Fifteen samples were used to verify the effectiveness of this method. The results show that compared with the traditional quantitative method, the catastrophe progression owns higher accuracy and good application potential in predicting the seismic stability of embankment slope.展开更多
The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated...The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated with zero-thickness elasto-plastic interface elements. Effects of pile spacing and pile position on the safety factor of slope and the behavior of piles under these conditions are given. The numerical analysis indicates that the positions of the pile have significant influence on the stability of the slope, and the pile needs to be installed in the middle of the slope for maximum safety factors. In the end, the soil arching effect closely associated with the space between stabilizing piles is analyzed. The results are helpful for design and construction of stabilizing piles.展开更多
The Embankment with Crushed-Stone Slope Protection(ECSSP) in permafrost regions is an effective measure to cool subgrade and protect permafrost.It can mitigate the engineering hazards of the Qinghai-Tibet railway in t...The Embankment with Crushed-Stone Slope Protection(ECSSP) in permafrost regions is an effective measure to cool subgrade and protect permafrost.It can mitigate the engineering hazards of the Qinghai-Tibet railway in the permafrost regions. Considering the influence of the noctumal cold air during summer months in Qinghai-Tibet Plateau。展开更多
The characteristics of high-filled embankment rheological settlement were analyzed;mechanical calculation model of high-filled embankment rheological settlement during constructing and running period was also put forw...The characteristics of high-filled embankment rheological settlement were analyzed;mechanical calculation model of high-filled embankment rheological settlement during constructing and running period was also put forward.Combining the macroscopic and microscopic deformation properties of the engineering soil grain,its constitutive model was set up and its characters were fully revealed,at the same time,its practical calculation formula under the action of dead-weight load was derived,which is feasible by analysis and comparison.展开更多
The use of geotextiles as a reinforcement material for improving the factor of safety against slope failure in embankments built on soft clay is becoming a common practice. This work is intended to help understand the...The use of geotextiles as a reinforcement material for improving the factor of safety against slope failure in embankments built on soft clay is becoming a common practice. This work is intended to help understand the effect of the geotextile reinforcement has on such embankments and to provide a design aid for civil engineers that enables them to quickly estimate the factor of safety against slope failure. Seventy four different cases were modelled and analyzed using a finite element software, GeoStudio 2018 R2. The results showed that the optimum improvement was achieved when using a single layer of geotextile reinforcement placed at the base of the embankment, by which the factor of safety increased by up to 40%. Adding a second layer, a third layer and a fourth layer, increases the safety factor by 2.5%, 1% and 0.5% respectively. Different charts for different heights of embankments were presented to aid in finding the most suitable slope angle and number of reinforcement layers required to achieve a certain safety factor.展开更多
To ensure the long-term service performance of infrastructure such as railways,highways,airports and oil pipelines built on permafrost slope wetland sites,it is imperative to systematically uncover the long-term heat-...To ensure the long-term service performance of infrastructure such as railways,highways,airports and oil pipelines built on permafrost slope wetland sites,it is imperative to systematically uncover the long-term heat-water changes of soil in slope wetlands environment under climate warming.More specifically,considering valuable field data from 2001 to 2019,the long-term heat and water changes in active layers of the slope wetland site along the Qinghai-Xizang Railway(QXR)are illustrated,the effect of thermosyphon measures in protecting the permafrost environment is evaluated,and the influences of climate warming and hydrological effects on the stability of slope wetland embankments are systematically discussed.The permafrost at the slope wetland site is rapidly degrading,demonstrating a reduction in active layer thickness of>3.7 cm per year and a permafrost temperature warming of>0.006℃ per year.The thermosiphon embankment developed by QXR has a specific cooling period;thus,to mitigate the long-term impacts of climate warming on the thermal stability of permafrost foundation,it is essential to implement strengthening measures for the thermosiphon embankment,such as adding a crushed-rock layer or sunshade board on the slope of thermosiphon embankment to creating a composite cooling embankment.Short-term seasonal groundwater seepage intensifies frost damage to the slope wetland embankment,while long-term seasonal supra-permafrost water and groundwater seepage exacerbates uneven transverse deformation of slope wetland embankment.Long-term climate warming and slope effects have altered the surface water and groundwater hydrological processes of slope wetlands,potentially leading to an increased occurrence of slope embankment instability.These results are crucial for improving our understanding of heat and water variation processes in the active layer of slope wetland sites located in permafrost regions and ensuring long-term service safety for the QXR.展开更多
As an important transportation hub in China,the traffic volume and driving speed are important aspects of expressways.Therefore,the protection requirements for roadbed side slopes are higher,and it is necessary to res...As an important transportation hub in China,the traffic volume and driving speed are important aspects of expressways.Therefore,the protection requirements for roadbed side slopes are higher,and it is necessary to resist rainwater erosion and other damages by protecting the side slopes.Therefore,it is necessary to adopt effective technical means of subgrade protection and support.This paper mainly summarizes the characteristics of highway subgrade slope protection construction and slope protection and support technologies.展开更多
基金supported by the Western Project Program of the Chinese Academy of Sciences (No. KZCX2-XB3-19)the National Key Basic Research Program of China, 973 Program (No. 2012CB026101)
文摘For the purpose of enhancing air convection and controlling solar radiation, a new crushed-rock slope embankment design combined with a sun-shade measure is proposed. A newly designed embankment was constructed in the Tuotuohe section of the Qinghai-Tibet Railway and a field-testing experiment was carried out to determine its convection and temperature characteristics. The results show that distinct air convection occurred in the crushed-rock layer of the new embankment, especially in cold seasons, which was enhanced when it flowed upwards along the slope. This preliminarily indicated that the new design of the embankment slope was good for reinforcing air convection in the crushed-rock layer. The frequent fluctuations of the convection speed and the environmental wind speed were in good agreement, suggesting that the convection in the crushed rock primarily came from the ambient wind. It was also preliminarily determined that the new embankment had a better cooling effect and sun-shade effect for decreasing the temperature of the embankment slope compared with a traditional crushed-rock slope embankment, and the mean temperature difference between them was up to 1.7 °C. The mean annual temperature at the bottom boundary of the crushed-rock layer was obviously lower than that at the top boundary, and heat flux calculation showed that the shallow soil beneath the embankment slope was weakly releasing heat, all of which indicated that the new embankment slope design was beneficial to the thermal stability of the embankment. This study is helpful in providing some references for improved engineering design and maintenance of roadbeds in permafrost regions.
基金supported by the National 973 Project of China (No. 2012CB026104)the National Natural Science Foundation of China (No. 51378057)
文摘Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafrost embankment design in frozen ground regions. The prediction may be further complicated due to the inherent uncertainties of material properties. Hence, stochastic analyses should be conducted. Firstly, Karhunen-Loeve expansion is applied to attain the random fields for hydraulic and thermal conductions. Next, the mixed-form modified Richards equation for mass transfer (i.e., mass equation) and the heat transport equation for heat transient flow in a variably saturated frozen soil are combined into one equation with temperature unknown. Furthermore, the finite element formulation for the coupled thermal-hydraulic fields is derived. Based on the random fields, the stochastic finite element analyses on stability of embankment are carried out. Numerical results show that stochastic analyses of embankment stability may provide a more rational picture for the distribution of factors of safety (FOS), which is definitely useful for embankment design in frozen ground regions.
基金Project(51808116) supported by the National Natural Science Foundation of ChinaProject(BK20180404) supported by the Natural Science Foundation of Jiangsu Province, China+1 种基金Project(KFJ170106) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology,ChinaProject(242020R40133) supported by Fundamental Research Funds for the Central Universities, China。
文摘In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of the particle micro parameters on the macroscopic characteristics of cohesive soil and calibrate the micro parameters of DEM model on this basis. Embankment slope stability analysis was carried out by strength reduction and gravity increase method, it is shown that the safety factor obtained by strength reduction method is more conservative, and the arc-shaped feature of the sliding surface under the gravity increase method is more obvious. Throughout the progressive failure process, the failure trends, maximum displacements, and velocity changes obtained by the two methods were consistent. When slope was destroyed, the upper part was cracked, the middle part was sheared, and the lower part was destroyed by extrusion. The conclusions of this paper can be applied to the safety factor calculation of cohesive soil slopes and the analysis of the instability process.
基金supported by the National Natural Science Foundation of China(Grant Nos 40801022 and 40821001)the Chinese Academy of Sciences(CAS) Knowledge Innovation Key Directional Program(Grant Nos KZCX2-YW-Q03-04 and KZCX2-YW-311)+2 种基金CAS Western Project(Grant No.KZCX2-XB2-10)China Postdoctoral Science Foundation(No.20080430110)CAS 100-Talent Programs"Stability of Linear Engineering Foundations in Warm Permafrost Regions under a Changing Climate"and"Deformation and Stability of Roadbed in Permafrost Regions",CAS West Light Foundation for PhD G.Y.Li,Funds of the State Key Laboratory of Frozen Soils Engineering,CAS(Grant Nos SKLFSE-ZQ-02 and SKLFSE-ZY-03)
文摘Permafrost (perennially frozen ground) appears widely in the Golmud-Lhasa section of the Qinghai-Tibet railway and is characterized by high ground temperature (≥1℃) and massive ground ice. Under the scenarios of global warming and human activity, the permafrost under the railway will gradually thaw and the massive ground ice will slowly melt, resulting in some thaw settlement hazards, which mainly include longitudinal and lateral cracks, and slope failure. The crushed rock layer has a thermal semiconductor effect under the periodic fluctuation of natural air. It can be used to lower the temperature of the underlying permafrost along the Qinghai-Tibet railway, and mitigate the thaw settlement hazards of the subgrade. In the present paper, the daily and annual changes in the thermal characteristics of the embankment with crushed rock side slope (ECRSS) were quantitatively simulated using the numerical method to study the cooling effect of the crushed rock layer and its mitigative ability. The results showed that the ECRSS absorbed some heat in the daytime in summer, but part of it was released at night, which accounted for approximately 20% of that absorbed. Within a year, it removed more heat from the railway subgrade in winter than that absorbed in summer. It can store approximately 20% of the "cold" energy in subgrade. Therefore, ECRSS is a better measure to mitigate thaw settlement hazards to the railway.
基金financially supported by the open research fund of Key Laboratory of Highway Engineering of Sichuan Province, Southwest Jiaotong University (No. LHTE009201109)
文摘An evaluation method for the seismic stability of embankment slope was presented based on catastrophe theory. Seven control factors, including internal frictional angle, cohesion force, slope height, slope angle, surface gradients, peak acceleration, and distance to fault were selected for analysis of multi-level objective decomposition. According to the normalization formula and the fuzzy subject function produced by combination of catastrophe theory and fuzzy math, a recursive calculation was carried out to obtain a catastrophic affiliated functional value, which can be used to evaluate the seismic stability of embankment slope. Fifteen samples were used to verify the effectiveness of this method. The results show that compared with the traditional quantitative method, the catastrophe progression owns higher accuracy and good application potential in predicting the seismic stability of embankment slope.
基金Supported by Young Teacher Foundation of Tianjin University(No.5110104)
文摘The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated with zero-thickness elasto-plastic interface elements. Effects of pile spacing and pile position on the safety factor of slope and the behavior of piles under these conditions are given. The numerical analysis indicates that the positions of the pile have significant influence on the stability of the slope, and the pile needs to be installed in the middle of the slope for maximum safety factors. In the end, the soil arching effect closely associated with the space between stabilizing piles is analyzed. The results are helpful for design and construction of stabilizing piles.
文摘The Embankment with Crushed-Stone Slope Protection(ECSSP) in permafrost regions is an effective measure to cool subgrade and protect permafrost.It can mitigate the engineering hazards of the Qinghai-Tibet railway in the permafrost regions. Considering the influence of the noctumal cold air during summer months in Qinghai-Tibet Plateau。
基金Project(06C843) supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘The characteristics of high-filled embankment rheological settlement were analyzed;mechanical calculation model of high-filled embankment rheological settlement during constructing and running period was also put forward.Combining the macroscopic and microscopic deformation properties of the engineering soil grain,its constitutive model was set up and its characters were fully revealed,at the same time,its practical calculation formula under the action of dead-weight load was derived,which is feasible by analysis and comparison.
文摘The use of geotextiles as a reinforcement material for improving the factor of safety against slope failure in embankments built on soft clay is becoming a common practice. This work is intended to help understand the effect of the geotextile reinforcement has on such embankments and to provide a design aid for civil engineers that enables them to quickly estimate the factor of safety against slope failure. Seventy four different cases were modelled and analyzed using a finite element software, GeoStudio 2018 R2. The results showed that the optimum improvement was achieved when using a single layer of geotextile reinforcement placed at the base of the embankment, by which the factor of safety increased by up to 40%. Adding a second layer, a third layer and a fourth layer, increases the safety factor by 2.5%, 1% and 0.5% respectively. Different charts for different heights of embankments were presented to aid in finding the most suitable slope angle and number of reinforcement layers required to achieve a certain safety factor.
基金This research was supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2021QZKK0205)the National Natural Science Foundation of China(41901082).
文摘To ensure the long-term service performance of infrastructure such as railways,highways,airports and oil pipelines built on permafrost slope wetland sites,it is imperative to systematically uncover the long-term heat-water changes of soil in slope wetlands environment under climate warming.More specifically,considering valuable field data from 2001 to 2019,the long-term heat and water changes in active layers of the slope wetland site along the Qinghai-Xizang Railway(QXR)are illustrated,the effect of thermosyphon measures in protecting the permafrost environment is evaluated,and the influences of climate warming and hydrological effects on the stability of slope wetland embankments are systematically discussed.The permafrost at the slope wetland site is rapidly degrading,demonstrating a reduction in active layer thickness of>3.7 cm per year and a permafrost temperature warming of>0.006℃ per year.The thermosiphon embankment developed by QXR has a specific cooling period;thus,to mitigate the long-term impacts of climate warming on the thermal stability of permafrost foundation,it is essential to implement strengthening measures for the thermosiphon embankment,such as adding a crushed-rock layer or sunshade board on the slope of thermosiphon embankment to creating a composite cooling embankment.Short-term seasonal groundwater seepage intensifies frost damage to the slope wetland embankment,while long-term seasonal supra-permafrost water and groundwater seepage exacerbates uneven transverse deformation of slope wetland embankment.Long-term climate warming and slope effects have altered the surface water and groundwater hydrological processes of slope wetlands,potentially leading to an increased occurrence of slope embankment instability.These results are crucial for improving our understanding of heat and water variation processes in the active layer of slope wetland sites located in permafrost regions and ensuring long-term service safety for the QXR.
文摘As an important transportation hub in China,the traffic volume and driving speed are important aspects of expressways.Therefore,the protection requirements for roadbed side slopes are higher,and it is necessary to resist rainwater erosion and other damages by protecting the side slopes.Therefore,it is necessary to adopt effective technical means of subgrade protection and support.This paper mainly summarizes the characteristics of highway subgrade slope protection construction and slope protection and support technologies.