A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer ...A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer chains in the northern hemisphere during March 17 19, 1978. The results show that the whole current pattern for any given instant consists of a few eigen modes with different intensities. The first eigen mode exhibits a two cell current construction, characterizing the large scale magnetospheric convection and directly driven process, while the second eigen mode shows a concentrated westward electrojet at midnight sector, characterizing the substorm current wedge and the loading unloading process. The first mode consistently exists whenever during quiet periods or at substorms, and its intensity increases from the beginning of the growth phase of substorms, then quickly intensifies in the expansion phase, followed by a gradual decrease in the recovery phase. On the other hand, the intensity of the second mode remains to be near zero during both quiet time and the growth phase of substorms. Its rapid enhancement occurs in the expansion phase. These characteristics in the current patterns and the intensity variations coincide with the defined physical processes of the directly driven and loading unloading components.展开更多
This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the hig...This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the high voltage circuit breaker during its close-open operating cycle. Using real time measurements of currents/voltages and angles during the close-opening cycle of high voltage generator circuit breaker and the impact of the dc component of current in context of interrupting large magnitude of current from the circuit breaker. In addition, the paper describes a study case model and the results of simulations performed using the software EMTP-ATP of an actual incident that occurred during the inadvertent synchronization of a large 339 MW, 24 kV generator to the grid.展开更多
A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can i...A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.展开更多
Magneto-mechanical coupling vibration arises in the in-vessel components of Tokamak devices especially during the plasma disruption. Strong electromagnetic forces cause the structures to vibrate while the motion in tu...Magneto-mechanical coupling vibration arises in the in-vessel components of Tokamak devices especially during the plasma disruption. Strong electromagnetic forces cause the structures to vibrate while the motion in turn changes the distribution of the electromagnetic field. To ensure the Tokamak devices operating in a designed state, numerical analysis on the coupling vibration is of great importance. This paper introduces two numerical methods for the magneto-mechanical coupling problems. The coupling term of velocity and magnetic flux density is manipulated in both Eulerian and Lagrangian description, which brings much simplification in numerical implementation. Corresponding numerical codes have been developed and applied to the dynamic simulation of a test module in J-TEXT and the vacuum vessel of HL-2M during plasma disruptions. The results reveal the evident influence of the magnetic stiffness and magnetic damping effects on the vibration behavior of the in-vessel structures. Finally, to deal with the halo current injection problem, a numerical scheme is described and validated which can simulate the distribution of the halo current without complicated manipulations.展开更多
Nickel-coated graphite particles and two-component silicone-rubber were compounded to form a conductive composite system. The electrical volume resistivity of the composites were examined and compared under constant t...Nickel-coated graphite particles and two-component silicone-rubber were compounded to form a conductive composite system. The electrical volume resistivity of the composites were examined and compared under constant tensile strains, cyclic heating-cooling, electric field and repeated cyclic tensile strains in order to study the mechanism of electrical conductivity behaviors of the conductive composites under stress, temperature and current. The results showed that a peak value of the electrical resistivity appeared previously and then gradually increasing with increasing tensile strain. The electrical resistivity displayed positive temperature coefficient effect during the temperature increasing and decreasing. Applying 5A direct current to the conductive composites lesulted in an increase in the electrical resistance immediately, but no changes were detected under lower currents. Under the repeated cyclic strain, the peak value of the electrical resistivity of each cycle increased with the test cycle. All the electrical resistivity changes were attributed to the conductive networks broken-up and rebuilt in the conductive composites.展开更多
由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段...由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段定位的方法。首先,针对SNOP的典型控制策略,分析FDN的短路故障特征。其次,计算配电网中不同故障位置电流正序分量的Tanimoto系数,通过对比不同位置的电流正序分量波形相似性,构建FDN短路故障定位判据,并通过Teager能量算子(Teager energy operation,TEO)实现故障时刻的精确定位,利用智能配电终端(smart terminal unit,STU)传递信息。最后,通过建模仿真对所提方法进行分析验证,结果表明该方法能够对故障区段进行准确定位,不受故障位置、故障类型、过渡电阻、采样频率及通信延时等因素的影响,验证了该方法的可行性与有效性。展开更多
The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235 B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundament...The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235 B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 k A, 8 k A,400 A, and 100 k A, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235 B, the first return stroke component results in the largest damage area with damage depth0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.展开更多
A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model...A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs) and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC), was developed based on a terrain-following vertical (sigma) coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tideand wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.展开更多
To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However,...To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However, no systematic algorithm yet exists to evaluate the consistency of the current distribution of short-circuit tests. A methodology is proposed in this paper to address this problem. Based on Kirchhoff’s current law and the generalized method of symmetrical components, the current deviations of the AT feeding systems are analysed and then normalized with the short-circuit current as they vary greatly with systems and short-circuit sites. It is also found that the short-circuit current varies with the calculation methods, and its unbiased standard deviation also reflects the consistency of the short-circuit test. The mean and maximum of the current deviations, as well as the unbiased standard deviation of the short-circuit current, show the consistency of the short-circuit test from different aspects,although the last two items are highly relevant. Therefore, a unified evaluation index is defined as the sum of the three items, and then applied in two case studies to test its performance. The results show that, the proposed index canclearly distinguish the consistency of the short-circuit tests and may be used to sort the short-circuit tests for fault location systems. Besides, some short-circuit tests may have very poor consistency indices, and thus are not applicable to the tuning of fault location systems. In the authors’ opinion, the determination of the threshold of the proposed index needs further investigation.展开更多
This paper partitions the arm current of MMC into uncontrollable current and controllable current. The former is determined by the load that can’t be controlled by taking any control strategy. The later caused by the...This paper partitions the arm current of MMC into uncontrollable current and controllable current. The former is determined by the load that can’t be controlled by taking any control strategy. The later caused by the unbalanced total inserted voltage of three arms can be controlled by some improved algorithms. The conclusion based on the researching the essence of circulating current is reached that change the number of the inserted sub-modules in each phase can suppress the circulating current. Combined with the improved ladder wave modulation, a novel circulating current suppression strategy particularly for the inverter station is developed. The improved strategy can adapt to load changes and reduce the circulating current and output voltage THD of MMC ac terminals greatly without increasing any peripheral circuits. Finally, the simulation model of 100 submodules in each phase is constructed in MATLAB and the simulation results verify the correctness and effectiveness of the modified control algorithm.展开更多
A new method of fault domain identification is proposed based on K-means clustering analysis theories using the wide-area information of power grid. In the method, the node Intelligent Electronic Device (IED) associat...A new method of fault domain identification is proposed based on K-means clustering analysis theories using the wide-area information of power grid. In the method, the node Intelligent Electronic Device (IED) associated domain is defined, and the relationship of positive sequence current fault component for the association domain boundaries is sought, then the conception of positive sequence fault component differential current for node IED association domains is introduced. The information of the positive sequence fault component differential current gathered by node IEDs is selected as the object of K-means clustering. The node IEDs of fault associated domains can be classified into one category, and the node IEDs of non-fault associated domains are classified into another category. With the fault area minimum principle, the group of node IEDs about fault associated domains can be obtained. The overlap of fault associated domains for different nodes is the fault area. A large number of simulations show that the algorithm proposed can identify fault domains with high accuracy and no influence by the operating mode of the system and topological changes.展开更多
Abst The basic information of the mainstream dishwasher detergents in China market was sorted out.The product form,main components and functions of the dishwasher detergents were described.The future development trend...Abst The basic information of the mainstream dishwasher detergents in China market was sorted out.The product form,main components and functions of the dishwasher detergents were described.The future development trend of dishwasher detergents was discussed from the aspects of the product efficacy,form and concentration.Finally,some suggestions were put forward for the promotion of dishwasher detergents in China.展开更多
The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microele...The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.展开更多
This study investigates the negative influence of an eccentric permanent-magnet(PM)design on high-frequency electromagnetic vibration in fractional-slot concentrated-winding(FSCW)PM machines.First,an analytical expres...This study investigates the negative influence of an eccentric permanent-magnet(PM)design on high-frequency electromagnetic vibration in fractional-slot concentrated-winding(FSCW)PM machines.First,an analytical expression for the sideband current harmonics was derived using the double Fourier series expansion method.Then,the characteristics of the flux-density harmonics are studied from the perspective of the space-time distribution and initial phase relationship.The influence of the eccentric PM design on high-frequency electromagnetic and concentrated forces was studied based on the electromagnetic force modulation effect.Consequently,an eccentric PM design is not conducive to reducing the 2pth-order high-frequency electromagnetic forces.Finally,two FSCW PM machines with conventional and eccentric PM designs are manufactured and tested to verify the theoretical analysis.The results show that the eccentric PM design worsens high-frequency vibrations.展开更多
文摘A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer chains in the northern hemisphere during March 17 19, 1978. The results show that the whole current pattern for any given instant consists of a few eigen modes with different intensities. The first eigen mode exhibits a two cell current construction, characterizing the large scale magnetospheric convection and directly driven process, while the second eigen mode shows a concentrated westward electrojet at midnight sector, characterizing the substorm current wedge and the loading unloading process. The first mode consistently exists whenever during quiet periods or at substorms, and its intensity increases from the beginning of the growth phase of substorms, then quickly intensifies in the expansion phase, followed by a gradual decrease in the recovery phase. On the other hand, the intensity of the second mode remains to be near zero during both quiet time and the growth phase of substorms. Its rapid enhancement occurs in the expansion phase. These characteristics in the current patterns and the intensity variations coincide with the defined physical processes of the directly driven and loading unloading components.
文摘This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the high voltage circuit breaker during its close-open operating cycle. Using real time measurements of currents/voltages and angles during the close-opening cycle of high voltage generator circuit breaker and the impact of the dc component of current in context of interrupting large magnitude of current from the circuit breaker. In addition, the paper describes a study case model and the results of simulations performed using the software EMTP-ATP of an actual incident that occurred during the inadvertent synchronization of a large 339 MW, 24 kV generator to the grid.
文摘A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.
基金the National Magnetic Confinement Fusion Program of China(Grant 2013GB113005)the National Natural Science Foundation of China(Grants51577139 and 51407132)for funding in part
文摘Magneto-mechanical coupling vibration arises in the in-vessel components of Tokamak devices especially during the plasma disruption. Strong electromagnetic forces cause the structures to vibrate while the motion in turn changes the distribution of the electromagnetic field. To ensure the Tokamak devices operating in a designed state, numerical analysis on the coupling vibration is of great importance. This paper introduces two numerical methods for the magneto-mechanical coupling problems. The coupling term of velocity and magnetic flux density is manipulated in both Eulerian and Lagrangian description, which brings much simplification in numerical implementation. Corresponding numerical codes have been developed and applied to the dynamic simulation of a test module in J-TEXT and the vacuum vessel of HL-2M during plasma disruptions. The results reveal the evident influence of the magnetic stiffness and magnetic damping effects on the vibration behavior of the in-vessel structures. Finally, to deal with the halo current injection problem, a numerical scheme is described and validated which can simulate the distribution of the halo current without complicated manipulations.
基金Funded by Wuhan Science and Technology Bureau (No.200710321090-18)
文摘Nickel-coated graphite particles and two-component silicone-rubber were compounded to form a conductive composite system. The electrical volume resistivity of the composites were examined and compared under constant tensile strains, cyclic heating-cooling, electric field and repeated cyclic tensile strains in order to study the mechanism of electrical conductivity behaviors of the conductive composites under stress, temperature and current. The results showed that a peak value of the electrical resistivity appeared previously and then gradually increasing with increasing tensile strain. The electrical resistivity displayed positive temperature coefficient effect during the temperature increasing and decreasing. Applying 5A direct current to the conductive composites lesulted in an increase in the electrical resistance immediately, but no changes were detected under lower currents. Under the repeated cyclic strain, the peak value of the electrical resistivity of each cycle increased with the test cycle. All the electrical resistivity changes were attributed to the conductive networks broken-up and rebuilt in the conductive composites.
文摘由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段定位的方法。首先,针对SNOP的典型控制策略,分析FDN的短路故障特征。其次,计算配电网中不同故障位置电流正序分量的Tanimoto系数,通过对比不同位置的电流正序分量波形相似性,构建FDN短路故障定位判据,并通过Teager能量算子(Teager energy operation,TEO)实现故障时刻的精确定位,利用智能配电终端(smart terminal unit,STU)传递信息。最后,通过建模仿真对所提方法进行分析验证,结果表明该方法能够对故障区段进行准确定位,不受故障位置、故障类型、过渡电阻、采样频率及通信延时等因素的影响,验证了该方法的可行性与有效性。
基金supported by a grant from National Natural Science Foundation of China(No.51577117)
文摘The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235 B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 k A, 8 k A,400 A, and 100 k A, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235 B, the first return stroke component results in the largest damage area with damage depth0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.
基金supported by the China Scholarship Council(Grant No.2011671057)the European Regional Development Fund(ERDF)through the Atlantic Area Transnational Programme(INTERREG IV)the National University of Ireland
文摘A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs) and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC), was developed based on a terrain-following vertical (sigma) coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tideand wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.
文摘To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However, no systematic algorithm yet exists to evaluate the consistency of the current distribution of short-circuit tests. A methodology is proposed in this paper to address this problem. Based on Kirchhoff’s current law and the generalized method of symmetrical components, the current deviations of the AT feeding systems are analysed and then normalized with the short-circuit current as they vary greatly with systems and short-circuit sites. It is also found that the short-circuit current varies with the calculation methods, and its unbiased standard deviation also reflects the consistency of the short-circuit test. The mean and maximum of the current deviations, as well as the unbiased standard deviation of the short-circuit current, show the consistency of the short-circuit test from different aspects,although the last two items are highly relevant. Therefore, a unified evaluation index is defined as the sum of the three items, and then applied in two case studies to test its performance. The results show that, the proposed index canclearly distinguish the consistency of the short-circuit tests and may be used to sort the short-circuit tests for fault location systems. Besides, some short-circuit tests may have very poor consistency indices, and thus are not applicable to the tuning of fault location systems. In the authors’ opinion, the determination of the threshold of the proposed index needs further investigation.
文摘This paper partitions the arm current of MMC into uncontrollable current and controllable current. The former is determined by the load that can’t be controlled by taking any control strategy. The later caused by the unbalanced total inserted voltage of three arms can be controlled by some improved algorithms. The conclusion based on the researching the essence of circulating current is reached that change the number of the inserted sub-modules in each phase can suppress the circulating current. Combined with the improved ladder wave modulation, a novel circulating current suppression strategy particularly for the inverter station is developed. The improved strategy can adapt to load changes and reduce the circulating current and output voltage THD of MMC ac terminals greatly without increasing any peripheral circuits. Finally, the simulation model of 100 submodules in each phase is constructed in MATLAB and the simulation results verify the correctness and effectiveness of the modified control algorithm.
文摘A new method of fault domain identification is proposed based on K-means clustering analysis theories using the wide-area information of power grid. In the method, the node Intelligent Electronic Device (IED) associated domain is defined, and the relationship of positive sequence current fault component for the association domain boundaries is sought, then the conception of positive sequence fault component differential current for node IED association domains is introduced. The information of the positive sequence fault component differential current gathered by node IEDs is selected as the object of K-means clustering. The node IEDs of fault associated domains can be classified into one category, and the node IEDs of non-fault associated domains are classified into another category. With the fault area minimum principle, the group of node IEDs about fault associated domains can be obtained. The overlap of fault associated domains for different nodes is the fault area. A large number of simulations show that the algorithm proposed can identify fault domains with high accuracy and no influence by the operating mode of the system and topological changes.
文摘Abst The basic information of the mainstream dishwasher detergents in China market was sorted out.The product form,main components and functions of the dishwasher detergents were described.The future development trend of dishwasher detergents was discussed from the aspects of the product efficacy,form and concentration.Finally,some suggestions were put forward for the promotion of dishwasher detergents in China.
文摘The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.
基金National Natural Science Foundation of China under Projects 52377055 and 51991383.
文摘This study investigates the negative influence of an eccentric permanent-magnet(PM)design on high-frequency electromagnetic vibration in fractional-slot concentrated-winding(FSCW)PM machines.First,an analytical expression for the sideband current harmonics was derived using the double Fourier series expansion method.Then,the characteristics of the flux-density harmonics are studied from the perspective of the space-time distribution and initial phase relationship.The influence of the eccentric PM design on high-frequency electromagnetic and concentrated forces was studied based on the electromagnetic force modulation effect.Consequently,an eccentric PM design is not conducive to reducing the 2pth-order high-frequency electromagnetic forces.Finally,two FSCW PM machines with conventional and eccentric PM designs are manufactured and tested to verify the theoretical analysis.The results show that the eccentric PM design worsens high-frequency vibrations.