High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is...High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.展开更多
Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated d...Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.展开更多
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance...Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.展开更多
The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is ...The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel.展开更多
BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is ...BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is necessary for therapeutic ultrasound applications.However,whether unilateral SHFJV allows adequate hemodynamics and gas exchange is unclear.AIM To compared SHFJV with pressure-controlled ventilation(PCV)during OLF by assessing hemodynamics and gas exchange in different animal positions.METHODS SHFJV or PCV was used alternatingly to ventilate the non-flooded lungs of the 12 anesthetized pigs during OLF.The animal positions were changed from left lateral position to supine position(SP)to right lateral position(RLP)every 30 min.In each position,ventilation was maintained for 15 min in both modalities.Hemodynamic variables and arterial blood gas levels were repeatedly measured.RESULTS Unilateral SHFJV led to lower carbon dioxide removal than PCV without abnormally elevated carbon dioxide levels.SHFJV slightly decreased oxygenation in SP and RLP compared with PCV;the lowest values of PaO_(2) and PaO_(2)/FiO_(2) ratio were found in SP[13.0;interquartile range(IQR):12.6-5.6 and 32.5(IQR:31.5-38.9)kPa].Conversely,during SHFJV,the shunt fraction was higher in all animal positions(highest in the RLP:0.30).CONCLUSION In porcine model,unilateral SHFJV may provide adequate ventilation in different animal positions during OLF.Lower oxygenation and CO_(2) removal rates compared to PCV did not lead to hypoxia or hypercapnia.SHFJV can be safely used for lung tumor ablation to minimize ventilation-induced lung motion.展开更多
BACKGROUND Sudden sensorineural hearing loss(SSNHL),characterized by a rapid and unexplained loss of hearing,particularly at moderate to high frequencies,presents a significant clinical challenge.The therapeutic use o...BACKGROUND Sudden sensorineural hearing loss(SSNHL),characterized by a rapid and unexplained loss of hearing,particularly at moderate to high frequencies,presents a significant clinical challenge.The therapeutic use of methylprednisolone sodium succinate(MPSS)via different administration routes,in combination with conventional medications,remains a topic of interest.AIM To compare the therapeutic efficacy of MPSS administered via different routes in combination with conventional drugs for the treatment of mid-to high-frequency SSNHL.METHODS The medical records of 109 patients with mid-to high-frequency SSNHL were analyzed.The patients were divided into three groups based on the route of administration:Group A[intratympanic(IT)injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection],Group B(intravenous injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection),and Group C(single IT injection of MPSS).The intervention effects were compared and analyzed.RESULTS The posttreatment auditory thresholds in Group A(21.23±3.34)were significantly lower than those in Groups B(28.52±3.36)and C(30.23±4.21;P<0.05).Group A also exhibited a significantly greater speech recognition rate(92.23±5.34)than Groups B and C.The disappearance time of tinnitus,time to hearing recovery,and disappearance time of vertigo in Group A were significantly shorter than those in Groups B and C(P<0.05).The total effective rate in Group A(97.56%)was significantly greater than that in Groups B and C(77.14%and 78.79%,χ^(2)=7.898,P=0.019).Moreover,the incidence of adverse reactions in Groups A and C was significantly lower than that in Group B(4.88%,3.03%vs 2.57%,χ^(2)=11.443,P=0.003),and the recurrence rate in Group A was significantly lower than that in Groups B and C(2.44%vs 20.00%vs 21.21%,χ^(2)=7.120,P=0.028).CONCLUSION IT injection of MPSS combined with conventional treatment demonstrates superior efficacy and safety compared to systemic administration via intravenous infusion and a single IT injection of MPSS.This approach effectively improves patients'hearing and reduces the risk of disease recurrence.展开更多
A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculati...A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculations and post simulations show that the detection error is no more than 2% for various temperatures and processes when the input amplitude is larger than 400mV. The detection bandwidth is up to 10GHz, and its static current dissipation is less than 20μA.展开更多
A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and dat...A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and data acquisition system of the probe are comprehensively examined.The fluctuation data from the EXL-50 plasma are analyzed in the time–frequency domain using fast Fourier transforms.Moreover,distinct high-frequency instabilities are detected using this diagnostic system.In particular,significant frequency chirping is observed,which is consistent with the bumpon-tail drive instability predicted using the Berk–Breizman model.展开更多
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these...With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.展开更多
As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst...As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
Magneto-dielectric properties of Co_(2)Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work.Ba_(3)Co_(2)Fe_(24-x)Gd_(x)O_(41)(x=0.00,0.05,0.10,0.15,an...Magneto-dielectric properties of Co_(2)Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work.Ba_(3)Co_(2)Fe_(24-x)Gd_(x)O_(41)(x=0.00,0.05,0.10,0.15,and 0.20)materials are successfully prepared by using solid-state method at 925℃for 4 h with 2.5-wt%Bi_(2)O_(3)sintering aids.The content of Gd^(3+)ion can affect micromorphology,grain size,bulk density,and magneto-dielectric properties of the ferrite.With Gd^(3+)ion content increasing,saturation magnetization(Ms)first increases and then decreases.The maximum value of Ms is 44.86 emu/g at x=0.15.Additionally,sites occupied by Gd^(3+)ions can change magnetic anisotropy constant of the ferrite.Magnetocrystalline anisotropy constant(K_1)is derived from initial magnetization curve,and found to be related to spin-orbit coupling and intersublattice interactions between metal ions.The real part of magnetic permeability(μ′)and real part of dielectric permittivity(ε′)are measured in a frequency range of 10 MHz-1 GHz.When x=0.15,material has excellent magneto-dielectric properties(μ′≈12.2 andε′≈17.61),low magnetic loss(tanδμ≈0.03 at 500 MHz),and dielectric loss(tanδε≈0.04 at 500 MHz).The results show that Gd-doped Co_(2)Z ferrite has broad application prospects in multilayer filters and high-frequency antennas.展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2682023CX019National Natural Science Foundation of China under Grant U23B6007 and Grant 52307141Sichuan Science and Technology Program under Grant 2024NSFSC0115。
文摘High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.
基金supported by National Natural Science Foundation of China(No.52177130)the Key Projects for Industrial Prospects and Core Technology Research in Suzhou City(No.SYC2022029)。
文摘Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.
基金supported by Grants from the National Natural Science Foundation of China(42004010)the Beijing Natural Science Foundation(8204077)。
文摘Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.
基金Smart Integration Key Technologies and Application Demonstrations of Large Scale Underground Space Disaster Prevention and Reduction in Guangzhou International Financial City([2021]–KJ058).
文摘The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel.
文摘BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is necessary for therapeutic ultrasound applications.However,whether unilateral SHFJV allows adequate hemodynamics and gas exchange is unclear.AIM To compared SHFJV with pressure-controlled ventilation(PCV)during OLF by assessing hemodynamics and gas exchange in different animal positions.METHODS SHFJV or PCV was used alternatingly to ventilate the non-flooded lungs of the 12 anesthetized pigs during OLF.The animal positions were changed from left lateral position to supine position(SP)to right lateral position(RLP)every 30 min.In each position,ventilation was maintained for 15 min in both modalities.Hemodynamic variables and arterial blood gas levels were repeatedly measured.RESULTS Unilateral SHFJV led to lower carbon dioxide removal than PCV without abnormally elevated carbon dioxide levels.SHFJV slightly decreased oxygenation in SP and RLP compared with PCV;the lowest values of PaO_(2) and PaO_(2)/FiO_(2) ratio were found in SP[13.0;interquartile range(IQR):12.6-5.6 and 32.5(IQR:31.5-38.9)kPa].Conversely,during SHFJV,the shunt fraction was higher in all animal positions(highest in the RLP:0.30).CONCLUSION In porcine model,unilateral SHFJV may provide adequate ventilation in different animal positions during OLF.Lower oxygenation and CO_(2) removal rates compared to PCV did not lead to hypoxia or hypercapnia.SHFJV can be safely used for lung tumor ablation to minimize ventilation-induced lung motion.
文摘BACKGROUND Sudden sensorineural hearing loss(SSNHL),characterized by a rapid and unexplained loss of hearing,particularly at moderate to high frequencies,presents a significant clinical challenge.The therapeutic use of methylprednisolone sodium succinate(MPSS)via different administration routes,in combination with conventional medications,remains a topic of interest.AIM To compare the therapeutic efficacy of MPSS administered via different routes in combination with conventional drugs for the treatment of mid-to high-frequency SSNHL.METHODS The medical records of 109 patients with mid-to high-frequency SSNHL were analyzed.The patients were divided into three groups based on the route of administration:Group A[intratympanic(IT)injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection],Group B(intravenous injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection),and Group C(single IT injection of MPSS).The intervention effects were compared and analyzed.RESULTS The posttreatment auditory thresholds in Group A(21.23±3.34)were significantly lower than those in Groups B(28.52±3.36)and C(30.23±4.21;P<0.05).Group A also exhibited a significantly greater speech recognition rate(92.23±5.34)than Groups B and C.The disappearance time of tinnitus,time to hearing recovery,and disappearance time of vertigo in Group A were significantly shorter than those in Groups B and C(P<0.05).The total effective rate in Group A(97.56%)was significantly greater than that in Groups B and C(77.14%and 78.79%,χ^(2)=7.898,P=0.019).Moreover,the incidence of adverse reactions in Groups A and C was significantly lower than that in Group B(4.88%,3.03%vs 2.57%,χ^(2)=11.443,P=0.003),and the recurrence rate in Group A was significantly lower than that in Groups B and C(2.44%vs 20.00%vs 21.21%,χ^(2)=7.120,P=0.028).CONCLUSION IT injection of MPSS combined with conventional treatment demonstrates superior efficacy and safety compared to systemic administration via intravenous infusion and a single IT injection of MPSS.This approach effectively improves patients'hearing and reduces the risk of disease recurrence.
文摘A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculations and post simulations show that the detection error is no more than 2% for various temperatures and processes when the input amplitude is larger than 400mV. The detection bandwidth is up to 10GHz, and its static current dissipation is less than 20μA.
基金supported by National Natural Science Foundation of China(No.11706151)。
文摘A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and data acquisition system of the probe are comprehensively examined.The fluctuation data from the EXL-50 plasma are analyzed in the time–frequency domain using fast Fourier transforms.Moreover,distinct high-frequency instabilities are detected using this diagnostic system.In particular,significant frequency chirping is observed,which is consistent with the bumpon-tail drive instability predicted using the Berk–Breizman model.
基金supported by the National Science Foundation of China under Grant 62271062 and 62071063by the Zhijiang Laboratory Open Project Fund 2020LCOAB01。
文摘With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.
文摘As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金the National Key Research and Development Program of China(Grant No.2022YFB3504800)the National Natural Science Foundation of China(Grant Nos.61901142,52003256,and 51902037)the Natural Science Foundation of Shanxi Province,China(Grant No.201901D211259)。
文摘Magneto-dielectric properties of Co_(2)Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work.Ba_(3)Co_(2)Fe_(24-x)Gd_(x)O_(41)(x=0.00,0.05,0.10,0.15,and 0.20)materials are successfully prepared by using solid-state method at 925℃for 4 h with 2.5-wt%Bi_(2)O_(3)sintering aids.The content of Gd^(3+)ion can affect micromorphology,grain size,bulk density,and magneto-dielectric properties of the ferrite.With Gd^(3+)ion content increasing,saturation magnetization(Ms)first increases and then decreases.The maximum value of Ms is 44.86 emu/g at x=0.15.Additionally,sites occupied by Gd^(3+)ions can change magnetic anisotropy constant of the ferrite.Magnetocrystalline anisotropy constant(K_1)is derived from initial magnetization curve,and found to be related to spin-orbit coupling and intersublattice interactions between metal ions.The real part of magnetic permeability(μ′)and real part of dielectric permittivity(ε′)are measured in a frequency range of 10 MHz-1 GHz.When x=0.15,material has excellent magneto-dielectric properties(μ′≈12.2 andε′≈17.61),low magnetic loss(tanδμ≈0.03 at 500 MHz),and dielectric loss(tanδε≈0.04 at 500 MHz).The results show that Gd-doped Co_(2)Z ferrite has broad application prospects in multilayer filters and high-frequency antennas.