We present the wavelet depth-frequency analysis and variable-scale frequency cycle analysis methods to study sedimentary cycles. The spectrum analysis, variable-scale frequency cycle analysis, and wavelet depth-freque...We present the wavelet depth-frequency analysis and variable-scale frequency cycle analysis methods to study sedimentary cycles. The spectrum analysis, variable-scale frequency cycle analysis, and wavelet depth-frequency analysis methods are mainly discussed to distinguish sedimentary cycles of different levels. The spectrum analysis method established the relationship between the spectrum characteristics and the thickness and number of sedimentary cycles. Both the variable-scale frequency cycle analysis and the wavelet depth-frequency analysis are based on the wavelet transform. The variable-scale frequency cycle analysis is used to obtain the relationship between the periodic changes of frequency in different scales and sedimentary cycles, and the wavelet depth-frequency analysis is used to obtain the relationship between migration changes of frequency energy clusters and sedimentary cycles. We designed a soft-ware system to process actual logging data from the Changqing Oilfield to analyze the sedimentary cycles, which verified the effectiveness of the three methods, and good results were obtained.展开更多
In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency anal...In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency analysis. The single signal and composite signal of different Milankovitch cycles are obtained by numerical simulation. The simulated composite signal can be separated into single signals of a single frequency cycle. We also develop a well-seismic calibration insertion technology which helps to realize the calibration from the spectrum characteristics of a single well to the seismic profile. And then we determine the change and distribution characteristics of spectrum cycles in the two-dimensional space. It points out the direction in determining the variations of the regional sedimentary sequence cycles, underground strata structure and the contact relationship.展开更多
According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G...According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G108-8 in the Cangdong Sag,Bohai Bay Basin,was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins.A logging vectorgraph in red pattern was plotted,and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member.The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales.It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals,a low paleosalinity,a relatively humid paleoclimate and a high density of laminae,while the fifth-order R cycles display a high content of carbonate minerals,a high paleosalinity,a dry paleoclimate and a low density of laminae.The changes in high-frequency cycles controlled the abundance and type of organic matter.The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters,implying a high primary productivity of lake for the generation and enrichment of shale oil.展开更多
The northern Himalayas was situated on the north margin of the Indian plate and was part of the Gondwana. During Mesozoic and Cenozoic, the geological development of the region was mainly controlled by the evolution o...The northern Himalayas was situated on the north margin of the Indian plate and was part of the Gondwana. During Mesozoic and Cenozoic, the geological development of the region was mainly controlled by the evolution of the Neotethyan ocean as well as the movement of the plates (or blocks) on its two sides, showing as a typical passive continental margin [1] . The Mesozoic and Cenozoic sedimentation forms a giant transgression\|regression cycle in this region [2] . The strata have clearly recorded the processes that the Gondwana continent broke up, the Indian plate drifted northward, and consequently collided with the Eurasia, suggesting a Wilson cycle. They also reveals the evolution of the Neotethyan ocean from breakup to expanding, contracting and finally to closing. 1\ The major sedimentary cycles\;The marine Mesozoic and Cenozoic developed continuously in the northern Himalayas, south Tibet, with a total thickness of about 8000m. From the Triassic to Eocene, 70 third\|order sequences have been recognized [2] . Among them 12 are in the Triassic, 22 in the Jurassic, 27 in the Cretaceous and 9 in the Paleogene, with an average duration of 3m.y for each. These can in turn be grouped as 21 sequence sets and 6 mesosequences (2nd order). All of the mesosequences are bounded by prominent discontinuity at bottom, either with subaerial erosion or submarine truncation [2] , suggesting abrupt falls of sea\|level in long\|term changes. The approximate ages for the basal boundaries of these mesosequences are respectively at ca. 257Ma (latest Capitanian), 215Ma (latest Norian), 177Ma (early Aalenian), 138Ma (mid Tithonian), 103Ma (mid Albian) and 68Ma (late Maastrichtian). Each of mesosequences forms a major sedimentary cycles in the region and may result from the joint effects of global sea\|level changes and regional tectonic\|basin evolution.展开更多
It is shown from detailed study that there are some genetic relationships between outer events of celestial bodies and inner geological events of the earth, such as some kinds of correspondences between astronomical p...It is shown from detailed study that there are some genetic relationships between outer events of celestial bodies and inner geological events of the earth, such as some kinds of correspondences between astronomical periods and sedimentary cycles. The time spans of movement periods of the solar.system around the center of the galaxy and cross the plain of the galaxy, the periods of the earth orbit (Milankovitch period) and periods of sunspot are coincided with that of respective sedimentary cycles. It is suggested that the gravity and magnetic changes of the earth leading up to the global climatic and sea level changes are the dynamics of sedimentary cycles.展开更多
The Liangshan and Qixia formations in the Sichuan Basin of central China were formed in the earlier middle Permian. Based on outcrop observation of the Changjianggou section at Shangsi, Guangyuan region and 3 rd -orde...The Liangshan and Qixia formations in the Sichuan Basin of central China were formed in the earlier middle Permian. Based on outcrop observation of the Changjianggou section at Shangsi, Guangyuan region and 3 rd -order sequence division in typical drillings, one-dimensional spectrum analysis has been used to choose the better curve between the natural gamma ray spectrometry log(ln (Th/K)) in Well-Long17 and the gamma ray log(GR) in Well-Wujia1, respectively, for identifying Milankovitch cycles in Sequence PSQ1 which comprises the Liangshan and Qixia formations, and then to identify the variation in the Milankovitch cycle sequences. On this basis, the system tract and 4 th -order sequence interfaces in Sequence PSQ1 were found via two-dimensional spectral analysis and digital filtering. Finally, a high-frequency sequence division program was established. Among these cycles, long eccentricity (413.0 ka) and short eccentricity (123.0 ka) are the most unambiguous, and they are separately the major control factors in forming 4 th -order (parasequence sets) and 5 th -order (parasequences) sequences, with the average thicknesses corresponding to the main cycles being 11.47 m and 3.32 m in Well-Long17, and 14.21 m and 3.79 m in Well-Wujia1, respectively. In other words, the deposition rate in the beach subfacies is faster than that of the inner ramp facies. The ln(Th/K) curve is more sensitive than the GR as the index of relatively ancient water depth in carbonate deposition. One-dimensional spectrum analysis of ln(Th/K) curve could distinguish the Milankovitch cycle sequences that arose from the Precession cycle (20.90 ka), with a much higher credibility. Sequence PSQ1 in Well-Long17 contains 10 4 th -order sequences, and the growth span of Sequence PSQ1 consisting of the Liangshan and Qixia formations is about 4.13 Ma. The single deposition thickness of the long eccentricity cycle sequence has the characteristics of thinning and then thickening in the two-dimensional spectrum, which could be used to identify the system tract interface of the 3 rd -order sequence. The precession sequence thickness remains stationary. As a result, the early deposition rate in the mid-Permian of the Sichuan basin was very slow, remaining nearly stationary, and this reflects a sustained depositional environment. Whole-rock carbon and oxygen isotope curves could also prove this point. Milankovitch cycle sequence studies provide a basis for paleoenvironmental analysis and, as such, can be used to analyze ancient climate change, calculate deposition rate and deposition time, and carry out fine isochronous stratigraphic correlation.展开更多
Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence...Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence of these compounds limits their usage as food and feed.To obtain a glandless cotton variety with high-frequency somatic embryo production ability,27 glandless varieties展开更多
Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were...Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were collected using a human-occupied vehicle across the axis of the southern Yap Trench(SYT).The total organic carbon(TOC)and total nitrogen(TN)contents,δ13C,radiocarbon ages,specific surface areas,and grain size compositions of sediments from three cores were measured.We explored the influence of the lateral downslope transport on the dispersal of the sediments and established a tentative box model for the SOC balance.In the SYT,the surface TOC content decreased with water depth and was decoupled by the funneling effect of the V-shaped hadal trench.However,the sedimentation(0.0025 cm/a)and SOC accumulation rates(∼0.038 g/(m^(2)·a)(in terms of OC))were approximately 50%higher in the deeper hadal region than in the abyssal region(0.0016 cm/a and∼0.026 g/(m^(2)·a)(in terms of OC),respectively),indicating the occurrence of lateral downslope transport.The fluctuating variations in the prokaryotic abundances and the SOC accumulation rate suggest the periodic input of surficial sediments from the shallow region.The similar average TOC(0.31%–0.38%),TN(0.06%–0.07%)contents,and SOC compositions(terrestrial OC(11%–18%),marine phytoplanktonic OC(45%–53%),and microbial OC(32%–44%))of the three sites indicate that the lateral downslope transport has a significant mixing effect on the SOC composition.The output fluxes of the laterally transported SOC(0.44–0.56 g/(m^(2)·a)(in terms of OC))contributed approximately(47%–73%)of the total SOC input,and this proportion increased with water depth.The results of this study demonstrate the importance of lateral downslope transport in the spatial distribution and development of biomes.展开更多
The method of sedimentary cycle division is studied based on comprehensive research and activity analysis of well logging, combined with wavelet analysis and characteristics of stratigraphic cycle. Based on the method...The method of sedimentary cycle division is studied based on comprehensive research and activity analysis of well logging, combined with wavelet analysis and characteristics of stratigraphic cycle. Based on the method above, this paper divided stratigraphic cycles and finely classified the tratifigraphic by taking H1518 in HSS oilfield as an example. The result shows that sedimentary cycle can be divided effectively based on key stratum study, activity and wavelet analysis of well log, and the research of sedimentary cycle characteristics. H1 formation can be divided into 1 sand group, 3 sand layers and 7 single layers.展开更多
南阳凹陷黑龙庙地区砂砾岩体规模小,多期砂体叠置,沉积期次划分难,非均质性强、甜点区难以预测。为此,利用可视化技术对三维地震资料进行精细构造解析与古构造恢复,研究砂砾岩体成因。在对5口井层序地层划分基础上,依据砂组-砂体的沉积...南阳凹陷黑龙庙地区砂砾岩体规模小,多期砂体叠置,沉积期次划分难,非均质性强、甜点区难以预测。为此,利用可视化技术对三维地震资料进行精细构造解析与古构造恢复,研究砂砾岩体成因。在对5口井层序地层划分基础上,依据砂组-砂体的沉积旋回性与地震反射结构,划分砂砾岩体沉积期次;通过岩石物理分析与正演模拟明确砂砾岩体地球物理响应特征。通过井点处扇根、扇中、扇端地震反射特征与相同层位其他点处的地震反射特征进行相关分析,确定扇根、扇中、扇端的平面分布;实测砂砾岩体岩性、物性参数与波阻抗属性,交汇分析确定有效区分砂砾岩与泥岩的波阻抗属性的值域。依据高精度反演得到的波阻抗数据体,在砂砾岩体储层波阻抗值域及顶底反射层位控制下,求出有效储层厚度与分布,圈定砂砾岩体储层甜点区的范围。以此为依据在其甜点区上部署的HL1井日产油5.46 m 3,预测结果与实钻井一致。展开更多
基金supported by the National Science&Technology Major Project(No.2008ZX05020) of CNPC
文摘We present the wavelet depth-frequency analysis and variable-scale frequency cycle analysis methods to study sedimentary cycles. The spectrum analysis, variable-scale frequency cycle analysis, and wavelet depth-frequency analysis methods are mainly discussed to distinguish sedimentary cycles of different levels. The spectrum analysis method established the relationship between the spectrum characteristics and the thickness and number of sedimentary cycles. Both the variable-scale frequency cycle analysis and the wavelet depth-frequency analysis are based on the wavelet transform. The variable-scale frequency cycle analysis is used to obtain the relationship between the periodic changes of frequency in different scales and sedimentary cycles, and the wavelet depth-frequency analysis is used to obtain the relationship between migration changes of frequency energy clusters and sedimentary cycles. We designed a soft-ware system to process actual logging data from the Changqing Oilfield to analyze the sedimentary cycles, which verified the effectiveness of the three methods, and good results were obtained.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2011YYL128)the CNPC Innovation Foundation(GrantNo.2012D-5006-0103)the Ministry of Land and Resources special funds for scientific research on public cause(Grant No.201311107)
文摘In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency analysis. The single signal and composite signal of different Milankovitch cycles are obtained by numerical simulation. The simulated composite signal can be separated into single signals of a single frequency cycle. We also develop a well-seismic calibration insertion technology which helps to realize the calibration from the spectrum characteristics of a single well to the seismic profile. And then we determine the change and distribution characteristics of spectrum cycles in the two-dimensional space. It points out the direction in determining the variations of the regional sedimentary sequence cycles, underground strata structure and the contact relationship.
基金Supported by the National Major Research and Development Project(2020YFA0710504,2022YFF0801204)PetroChina Science and Technology Major Project(2019E-26)。
文摘According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G108-8 in the Cangdong Sag,Bohai Bay Basin,was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins.A logging vectorgraph in red pattern was plotted,and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member.The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales.It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals,a low paleosalinity,a relatively humid paleoclimate and a high density of laminae,while the fifth-order R cycles display a high content of carbonate minerals,a high paleosalinity,a dry paleoclimate and a low density of laminae.The changes in high-frequency cycles controlled the abundance and type of organic matter.The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters,implying a high primary productivity of lake for the generation and enrichment of shale oil.
基金theNationalNaturalScienceFoundationofChina (No .4982 5 10 2 )
文摘The northern Himalayas was situated on the north margin of the Indian plate and was part of the Gondwana. During Mesozoic and Cenozoic, the geological development of the region was mainly controlled by the evolution of the Neotethyan ocean as well as the movement of the plates (or blocks) on its two sides, showing as a typical passive continental margin [1] . The Mesozoic and Cenozoic sedimentation forms a giant transgression\|regression cycle in this region [2] . The strata have clearly recorded the processes that the Gondwana continent broke up, the Indian plate drifted northward, and consequently collided with the Eurasia, suggesting a Wilson cycle. They also reveals the evolution of the Neotethyan ocean from breakup to expanding, contracting and finally to closing. 1\ The major sedimentary cycles\;The marine Mesozoic and Cenozoic developed continuously in the northern Himalayas, south Tibet, with a total thickness of about 8000m. From the Triassic to Eocene, 70 third\|order sequences have been recognized [2] . Among them 12 are in the Triassic, 22 in the Jurassic, 27 in the Cretaceous and 9 in the Paleogene, with an average duration of 3m.y for each. These can in turn be grouped as 21 sequence sets and 6 mesosequences (2nd order). All of the mesosequences are bounded by prominent discontinuity at bottom, either with subaerial erosion or submarine truncation [2] , suggesting abrupt falls of sea\|level in long\|term changes. The approximate ages for the basal boundaries of these mesosequences are respectively at ca. 257Ma (latest Capitanian), 215Ma (latest Norian), 177Ma (early Aalenian), 138Ma (mid Tithonian), 103Ma (mid Albian) and 68Ma (late Maastrichtian). Each of mesosequences forms a major sedimentary cycles in the region and may result from the joint effects of global sea\|level changes and regional tectonic\|basin evolution.
文摘It is shown from detailed study that there are some genetic relationships between outer events of celestial bodies and inner geological events of the earth, such as some kinds of correspondences between astronomical periods and sedimentary cycles. The time spans of movement periods of the solar.system around the center of the galaxy and cross the plain of the galaxy, the periods of the earth orbit (Milankovitch period) and periods of sunspot are coincided with that of respective sedimentary cycles. It is suggested that the gravity and magnetic changes of the earth leading up to the global climatic and sea level changes are the dynamics of sedimentary cycles.
基金part of a key project carried out in 2008-2011 and financially supported by the National Major Special Science and Technology Project (No.2008ZX05004-001)a Major Special Issue of the China National Petroleum Corporation (No. 2008E-0702)
文摘The Liangshan and Qixia formations in the Sichuan Basin of central China were formed in the earlier middle Permian. Based on outcrop observation of the Changjianggou section at Shangsi, Guangyuan region and 3 rd -order sequence division in typical drillings, one-dimensional spectrum analysis has been used to choose the better curve between the natural gamma ray spectrometry log(ln (Th/K)) in Well-Long17 and the gamma ray log(GR) in Well-Wujia1, respectively, for identifying Milankovitch cycles in Sequence PSQ1 which comprises the Liangshan and Qixia formations, and then to identify the variation in the Milankovitch cycle sequences. On this basis, the system tract and 4 th -order sequence interfaces in Sequence PSQ1 were found via two-dimensional spectral analysis and digital filtering. Finally, a high-frequency sequence division program was established. Among these cycles, long eccentricity (413.0 ka) and short eccentricity (123.0 ka) are the most unambiguous, and they are separately the major control factors in forming 4 th -order (parasequence sets) and 5 th -order (parasequences) sequences, with the average thicknesses corresponding to the main cycles being 11.47 m and 3.32 m in Well-Long17, and 14.21 m and 3.79 m in Well-Wujia1, respectively. In other words, the deposition rate in the beach subfacies is faster than that of the inner ramp facies. The ln(Th/K) curve is more sensitive than the GR as the index of relatively ancient water depth in carbonate deposition. One-dimensional spectrum analysis of ln(Th/K) curve could distinguish the Milankovitch cycle sequences that arose from the Precession cycle (20.90 ka), with a much higher credibility. Sequence PSQ1 in Well-Long17 contains 10 4 th -order sequences, and the growth span of Sequence PSQ1 consisting of the Liangshan and Qixia formations is about 4.13 Ma. The single deposition thickness of the long eccentricity cycle sequence has the characteristics of thinning and then thickening in the two-dimensional spectrum, which could be used to identify the system tract interface of the 3 rd -order sequence. The precession sequence thickness remains stationary. As a result, the early deposition rate in the mid-Permian of the Sichuan basin was very slow, remaining nearly stationary, and this reflects a sustained depositional environment. Whole-rock carbon and oxygen isotope curves could also prove this point. Milankovitch cycle sequence studies provide a basis for paleoenvironmental analysis and, as such, can be used to analyze ancient climate change, calculate deposition rate and deposition time, and carry out fine isochronous stratigraphic correlation.
文摘Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence of these compounds limits their usage as food and feed.To obtain a glandless cotton variety with high-frequency somatic embryo production ability,27 glandless varieties
基金The Scientific Research Fund of the Second Institute of Oceanography under contract Nos JG2011 and JG1516the National Natural Science Foundation of China under contract No.41606090the National Basic Research Program(973 Program)of China under contract No.2015CB755904.
文摘Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were collected using a human-occupied vehicle across the axis of the southern Yap Trench(SYT).The total organic carbon(TOC)and total nitrogen(TN)contents,δ13C,radiocarbon ages,specific surface areas,and grain size compositions of sediments from three cores were measured.We explored the influence of the lateral downslope transport on the dispersal of the sediments and established a tentative box model for the SOC balance.In the SYT,the surface TOC content decreased with water depth and was decoupled by the funneling effect of the V-shaped hadal trench.However,the sedimentation(0.0025 cm/a)and SOC accumulation rates(∼0.038 g/(m^(2)·a)(in terms of OC))were approximately 50%higher in the deeper hadal region than in the abyssal region(0.0016 cm/a and∼0.026 g/(m^(2)·a)(in terms of OC),respectively),indicating the occurrence of lateral downslope transport.The fluctuating variations in the prokaryotic abundances and the SOC accumulation rate suggest the periodic input of surficial sediments from the shallow region.The similar average TOC(0.31%–0.38%),TN(0.06%–0.07%)contents,and SOC compositions(terrestrial OC(11%–18%),marine phytoplanktonic OC(45%–53%),and microbial OC(32%–44%))of the three sites indicate that the lateral downslope transport has a significant mixing effect on the SOC composition.The output fluxes of the laterally transported SOC(0.44–0.56 g/(m^(2)·a)(in terms of OC))contributed approximately(47%–73%)of the total SOC input,and this proportion increased with water depth.The results of this study demonstrate the importance of lateral downslope transport in the spatial distribution and development of biomes.
文摘The method of sedimentary cycle division is studied based on comprehensive research and activity analysis of well logging, combined with wavelet analysis and characteristics of stratigraphic cycle. Based on the method above, this paper divided stratigraphic cycles and finely classified the tratifigraphic by taking H1518 in HSS oilfield as an example. The result shows that sedimentary cycle can be divided effectively based on key stratum study, activity and wavelet analysis of well log, and the research of sedimentary cycle characteristics. H1 formation can be divided into 1 sand group, 3 sand layers and 7 single layers.
文摘南阳凹陷黑龙庙地区砂砾岩体规模小,多期砂体叠置,沉积期次划分难,非均质性强、甜点区难以预测。为此,利用可视化技术对三维地震资料进行精细构造解析与古构造恢复,研究砂砾岩体成因。在对5口井层序地层划分基础上,依据砂组-砂体的沉积旋回性与地震反射结构,划分砂砾岩体沉积期次;通过岩石物理分析与正演模拟明确砂砾岩体地球物理响应特征。通过井点处扇根、扇中、扇端地震反射特征与相同层位其他点处的地震反射特征进行相关分析,确定扇根、扇中、扇端的平面分布;实测砂砾岩体岩性、物性参数与波阻抗属性,交汇分析确定有效区分砂砾岩与泥岩的波阻抗属性的值域。依据高精度反演得到的波阻抗数据体,在砂砾岩体储层波阻抗值域及顶底反射层位控制下,求出有效储层厚度与分布,圈定砂砾岩体储层甜点区的范围。以此为依据在其甜点区上部署的HL1井日产油5.46 m 3,预测结果与实钻井一致。