This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the...This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the technique of frequency-focusing,and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure.The proposed model is validated by comparison with the published laboratory data.In respect of both the wave elevations and the underlying water particle kinematics,the numerical results are in excellent agreement with the experimental data.Furthermore,the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified.Then the generalized FNV theory and Rainey’s model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra)are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio)of the structure.展开更多
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch...The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.展开更多
Differential equations of free/forced radial vibrations of axisymmetrically loaded stepped pressure vessels are established by using singular functions. Furthermore, their general solutions are solved, the expression ...Differential equations of free/forced radial vibrations of axisymmetrically loaded stepped pressure vessels are established by using singular functions. Furthermore, their general solutions are solved, the expression of vibration mode function and frequency equations on usual supports are derived with W operator and the forced response of such vessels are calculated.展开更多
The step load response of reciprocating engines is one of the key characteristics when considering its application in medium to large scale stationary power generation especially with islanded generation. This paper d...The step load response of reciprocating engines is one of the key characteristics when considering its application in medium to large scale stationary power generation especially with islanded generation. This paper discusses the impacts of power frequency deviation on the generators and electrical equipment in the network and presents the relationship between step load capabilities and generator operating parameters. For a power plant consisting of a number of generators both step load and power output requirements must be satisfied. An analysis method is proposed to facilitate the development of an operation strategy which can meet both step load and power demand requirements in the full load range.? Typical reciprocating engine step load curves are used to demonstrate the analysis method and the results are further optimised for lower operational cost. This analysis method provides a general approach to operation strategy of large reciprocating engines used in islanded power generation.展开更多
Buckling could be induced when shallow arches were subjected to vertical step loads. In-plane static and dynamic buckling of shallow pin-ended parabolic arches with a horizontal cable was investigated. Based on the eq...Buckling could be induced when shallow arches were subjected to vertical step loads. In-plane static and dynamic buckling of shallow pin-ended parabolic arches with a horizontal cable was investigated. Based on the equations of motion derived from Hamilton's principle, nonlinear equilibrium equations and static buckling equilibrium equations were deduced. Through the pseudo-static analysis, approximate solutions to the lower and upper dynamic buckling loads under step loads were obtained, for shallow parabolic arches. The results show that dynamic buckling and snap-through buckling are impossible when modified slenderness ratio λ<λc and λ>λs, where λc and λs denote critical slenderness ratios of bucking and snap-through buckling, respectively; effects of the stiffness of the horizontal cable on the dynamic buckling are significant; and the dynamic buckling loads under a equivalent central concentrated step load are lower than the loads under a distributed load appreciably.展开更多
To analyze the bending properties of GCr15 steel guide rail based on the elastic-plastic theory, the novel bending loading method consisting of multi-step loading and corresponding unloading was applied in three speci...To analyze the bending properties of GCr15 steel guide rail based on the elastic-plastic theory, the novel bending loading method consisting of multi-step loading and corresponding unloading was applied in three specimens with different cross section shape and different heat treatment condition. According to the experimental results, using numerical calculation software program and the numerical simulation with finite element analysis (FEA), the relationships among the maximal load and displacement on cross section shape with each step bend loading, the loading stroke with the heat treatment condition, and the loading stroke with cross section shape were gained, and also those curves were discussed qualitatively. Finally, the contrast results between the numerical simulation and experiment were carried out to study the influence about the multi-step loading on specimen. It is put forward that enlightenment for the straightening stroke in the precision linear guide rail manufacture process.展开更多
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp...Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.展开更多
Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic...Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic step loads at its inner and outer surfaces. A second-order nonlinear ordinary differential equation approximately describing radially symmetric motion of the membrane is obtained by setting the thick- ness of the spherical structure close to one. The qualitative properties of the solutions are discussed in detail. In particular, the conditions that control the nonlinear periodic oscillation of the spherical membrane are proposed. In certain cases, it is proved that the oscillating form of the spherical membrane would present a homoclinic orbit of type "∞", and the amplitude growth of the periodic oscillation is discontinuous. Numerical results are provided.展开更多
In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The lin...In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The linear differential equations can be solved by spline collocanon method. Critical loads have been obtained accordingly.展开更多
To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great s...To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great significance. In this pa-per, a mathematical model for load capability online assessment of a distribution network is established, and a repeti-tive power flow calculation algorithm is proposed to solve the problem as well. With assessment on three levels: the entire distribution network, a sub-area of the network and a load bus, the security level of current operation mode and load transfer capability during outage are thus obtained. The results can provide guidelines for prevention control, as well as restoration control. Simulation results show that the method is simple, fast and can be applied to distribution networks belonged to any voltage level while taking into account all of the operation constraints.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51879039 and 51490672)。
文摘This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the technique of frequency-focusing,and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure.The proposed model is validated by comparison with the published laboratory data.In respect of both the wave elevations and the underlying water particle kinematics,the numerical results are in excellent agreement with the experimental data.Furthermore,the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified.Then the generalized FNV theory and Rainey’s model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra)are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio)of the structure.
基金Supported by the National Natural Science Foundation of China (40318002)
文摘The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.
文摘Differential equations of free/forced radial vibrations of axisymmetrically loaded stepped pressure vessels are established by using singular functions. Furthermore, their general solutions are solved, the expression of vibration mode function and frequency equations on usual supports are derived with W operator and the forced response of such vessels are calculated.
文摘The step load response of reciprocating engines is one of the key characteristics when considering its application in medium to large scale stationary power generation especially with islanded generation. This paper discusses the impacts of power frequency deviation on the generators and electrical equipment in the network and presents the relationship between step load capabilities and generator operating parameters. For a power plant consisting of a number of generators both step load and power output requirements must be satisfied. An analysis method is proposed to facilitate the development of an operation strategy which can meet both step load and power demand requirements in the full load range.? Typical reciprocating engine step load curves are used to demonstrate the analysis method and the results are further optimised for lower operational cost. This analysis method provides a general approach to operation strategy of large reciprocating engines used in islanded power generation.
基金Project (50478075) supported by the National Natural Science Foundation of China
文摘Buckling could be induced when shallow arches were subjected to vertical step loads. In-plane static and dynamic buckling of shallow pin-ended parabolic arches with a horizontal cable was investigated. Based on the equations of motion derived from Hamilton's principle, nonlinear equilibrium equations and static buckling equilibrium equations were deduced. Through the pseudo-static analysis, approximate solutions to the lower and upper dynamic buckling loads under step loads were obtained, for shallow parabolic arches. The results show that dynamic buckling and snap-through buckling are impossible when modified slenderness ratio λ<λc and λ>λs, where λc and λs denote critical slenderness ratios of bucking and snap-through buckling, respectively; effects of the stiffness of the horizontal cable on the dynamic buckling are significant; and the dynamic buckling loads under a equivalent central concentrated step load are lower than the loads under a distributed load appreciably.
基金Funded by the Open Research Foundation of State Key Lab of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (No. DMETKF2009016)the Hubei Province Science Founda-tion (No.2008CDB274)+1 种基金the Wuhan High-Tech Development Project Founda-tion (No.200812121559)the International Collaborative Research Funds of Chonbuk National University, 2008
文摘To analyze the bending properties of GCr15 steel guide rail based on the elastic-plastic theory, the novel bending loading method consisting of multi-step loading and corresponding unloading was applied in three specimens with different cross section shape and different heat treatment condition. According to the experimental results, using numerical calculation software program and the numerical simulation with finite element analysis (FEA), the relationships among the maximal load and displacement on cross section shape with each step bend loading, the loading stroke with the heat treatment condition, and the loading stroke with cross section shape were gained, and also those curves were discussed qualitatively. Finally, the contrast results between the numerical simulation and experiment were carried out to study the influence about the multi-step loading on specimen. It is put forward that enlightenment for the straightening stroke in the precision linear guide rail manufacture process.
文摘Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.
基金supported by the National Natural Science Foundation of China (Nos.10872045, 10721062,and 10772104)the Program for New Century Excellent Talents in University (No.NCET-09-0096)+1 种基金the Post-Doctoral Science Foundation of China (No.20070421049)the Fundamental Research Funds for the Central Universities (No.DC10030104)
文摘Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic step loads at its inner and outer surfaces. A second-order nonlinear ordinary differential equation approximately describing radially symmetric motion of the membrane is obtained by setting the thick- ness of the spherical structure close to one. The qualitative properties of the solutions are discussed in detail. In particular, the conditions that control the nonlinear periodic oscillation of the spherical membrane are proposed. In certain cases, it is proved that the oscillating form of the spherical membrane would present a homoclinic orbit of type "∞", and the amplitude growth of the periodic oscillation is discontinuous. Numerical results are provided.
文摘In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The linear differential equations can be solved by spline collocanon method. Critical loads have been obtained accordingly.
文摘To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great significance. In this pa-per, a mathematical model for load capability online assessment of a distribution network is established, and a repeti-tive power flow calculation algorithm is proposed to solve the problem as well. With assessment on three levels: the entire distribution network, a sub-area of the network and a load bus, the security level of current operation mode and load transfer capability during outage are thus obtained. The results can provide guidelines for prevention control, as well as restoration control. Simulation results show that the method is simple, fast and can be applied to distribution networks belonged to any voltage level while taking into account all of the operation constraints.