The outer cavity Janus-Helmholtz with sound insulation layer is presented for ob- taining the capacity of high-power non-directional transmitting. The radiation efficiency and directivity in the 0 degrees direction ca...The outer cavity Janus-Helmholtz with sound insulation layer is presented for ob- taining the capacity of high-power non-directional transmitting. The radiation efficiency and directivity in the 0 degrees direction can be improved when the radiation mode is changed by laying sound insulation layer. The operating bandwidth can be expanded effectively by the dual mode coupling between the cavity vibration and longitudinal vibration of Janus transducer. A prototype is designed by finite element method. Test results show that the results are in good agreement with the design results. Compared with inner cavity Janus-Helmholtz transducer, acoustic radiation performance of outer cavity Janus-Helmholtz underwater acoustic transducer in the 0 degrees direction has been significantly improved.展开更多
A finite elemcnt-Helmholtz integral hybrid method has been developed to calculate the electro-acoustic performance of a finite length cylindrical transducer immersed in water. The numerical study concerned with electr...A finite elemcnt-Helmholtz integral hybrid method has been developed to calculate the electro-acoustic performance of a finite length cylindrical transducer immersed in water. The numerical study concerned with electrical impedances and beam patterns of the transducer is presented. Experimental data are shown to support the numerical study.展开更多
Wireless technology for underwater communication possesses a wide range of potential application, but it is still a relatively unexplored area in many aspects concerning modems physical design. A step towards future d...Wireless technology for underwater communication possesses a wide range of potential application, but it is still a relatively unexplored area in many aspects concerning modems physical design. A step towards future deployment of underwater networks is the reduction of power consumption. Therefore, asynchronous wakeup systems need to be integrated within the physical layer design while avoiding the use of additional transducers. This paper offers a practical and generic solution to adapt data reception and transmission together with asynchronous wakeup sub-systems in acoustic underwater modem architectures using a low power and low cost solution. The proposal has been implemented in a real prototype with success.展开更多
基金supported by the National Natural Science Foundation of China(11304057)the Opening Fund of Acoustics Science and Technology Laboratory(SSKF2015001)
文摘The outer cavity Janus-Helmholtz with sound insulation layer is presented for ob- taining the capacity of high-power non-directional transmitting. The radiation efficiency and directivity in the 0 degrees direction can be improved when the radiation mode is changed by laying sound insulation layer. The operating bandwidth can be expanded effectively by the dual mode coupling between the cavity vibration and longitudinal vibration of Janus transducer. A prototype is designed by finite element method. Test results show that the results are in good agreement with the design results. Compared with inner cavity Janus-Helmholtz transducer, acoustic radiation performance of outer cavity Janus-Helmholtz underwater acoustic transducer in the 0 degrees direction has been significantly improved.
文摘A finite elemcnt-Helmholtz integral hybrid method has been developed to calculate the electro-acoustic performance of a finite length cylindrical transducer immersed in water. The numerical study concerned with electrical impedances and beam patterns of the transducer is presented. Experimental data are shown to support the numerical study.
文摘Wireless technology for underwater communication possesses a wide range of potential application, but it is still a relatively unexplored area in many aspects concerning modems physical design. A step towards future deployment of underwater networks is the reduction of power consumption. Therefore, asynchronous wakeup systems need to be integrated within the physical layer design while avoiding the use of additional transducers. This paper offers a practical and generic solution to adapt data reception and transmission together with asynchronous wakeup sub-systems in acoustic underwater modem architectures using a low power and low cost solution. The proposal has been implemented in a real prototype with success.