Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
Rock magnetism is useful in various applications. Hematite is one of the two most important carriers of magnetism in the natural world and its magnetic features were mostly studied through laboratory experiments using...Rock magnetism is useful in various applications. Hematite is one of the two most important carriers of magnetism in the natural world and its magnetic features were mostly studied through laboratory experiments using synthetic hematite samples. A gap exists between the magnetic behaviors of hematite contained in the natural rocks and ores and those of synthetic hematite samples. This paper presents the results of a rock magnetism study on the natural hematite ores from the Whaleback mine in the Hamersley Province in the northwest of Western Australia. It was found that high-grade hematite ores carry a much higher remanent magnetization than induced magnetization. Hematite ores with less than 0.1% magnetite appear to have an exponential correlation between the bulk susceptibility and hematite content in weight percentage, different from the commonly accepted linear relationship between the bulk susceptibility and hematite content obtained from synthetic hematite samples. The new knowledge gained from this study contributes to a better understanding of magnetic behaviors of hematite, particularly natural hematite, and hence applications to other relevant disciplines.展开更多
The Damiao Fe-Ti-P ore deposit,hosted in the;.74 Ga Damiao anorthosite complex,is the only known anorthosite-hosted deposit in China.The deposit contains hundreds of ore bodies occurring as irregular lenses,veins
13 kinds of iron ores (6 from Australia and 7 from Brazil) were studied on their properties concerning CW (Combined Water) decomposition, FezO3 decomposition and softening-melting in air atmosphere through the cha...13 kinds of iron ores (6 from Australia and 7 from Brazil) were studied on their properties concerning CW (Combined Water) decomposition, FezO3 decomposition and softening-melting in air atmosphere through the characterization method of TG-DSC (Thermogravimetry-Differential Scanning Caloremetry ). The experimental results of the Australian ores and Brazilian ores differ in terms of the initial temperature, temperature range and endothermic amount of CW decomposition,and besides, the content of CW. It is estimated that for every percent increase of CW content in sintering raw material, the extra thermal amount absorbed in the process is about 1.83 x 104 kJ, which equals to the thermal capacity of 0.625 kg of standard coal burning up completely. As to the decomposition of Fe203 ,the initial temperatures, terminal temperatures and temperature ranges of the Australian and Brazilian ores are quite close. However, the endothermic amount of Fe2O3 decomposition of the two turns out rather different: the endothermic capacity of Fe2O3 decomposition of the Australian ores is greater than that of the Brazilian ores. Furthermore, the liquid amount generated in the softening-melting process is closely related to the SiO2 content in iron ore. The higher SiO2 content the ore contains, the more liquid volume it will generate in the softening-melting process of iron ore.展开更多
The predominant types of high-grade iron deposits in China include skarn,sedimentary metamorphic(banded ironformation,BIF-type),continental/submarine volcanic-hosted and magmatic Fe-Ti-Voxide deposits.Based on a compr...The predominant types of high-grade iron deposits in China include skarn,sedimentary metamorphic(banded ironformation,BIF-type),continental/submarine volcanic-hosted and magmatic Fe-Ti-Voxide deposits.Based on a comprehensive review of current studies on these deposits,this paper suggests that the oxygen concentration in atmosphere played an important role for the formation of BIFs,whereas the tectonic setting and deep magmatic differentiation processes are more important for the other types.Notably,both high temperature and high pressure experiments and melt inclusion studies indicate that during the differentiation,high temperature magmas could develop iron-rich magma via liquid immiscibility but not pure oxide melt("iron ore magma").Fe-P melt could be generated directly by liquid immiscibility under hydrous and oxidized condition.The formation of high-grade iron deposits is mostly associated with the processes related to multiple stages of superimposition,e.g.,desiliconization and iron enrichment,removal of impurity,and remobilization and re-precipitation of iron.According to the temporal evolution,the high-grade iron deposit could be divided into multi-episode superimposition type(temporally discontinuous mineralization)and multi-stage superimposition type(temporally continuous mineralization).The former is represented by the sedimentary metamorphic iron deposit,and the latter includes those related to magmatic-hydrothermal fluids(e.g.,skarn,volcanic-hosted and magmatic types).展开更多
Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-cont...Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4.展开更多
The ca. 1.5 Ga mafic intrusions in the Zhuqing area, predominantly composed of alkaline gabbroic rocks in the Kangdian region of SW China, occur as dykes or irregular small intrusions hosting Fe–Ti–V mineralization....The ca. 1.5 Ga mafic intrusions in the Zhuqing area, predominantly composed of alkaline gabbroic rocks in the Kangdian region of SW China, occur as dykes or irregular small intrusions hosting Fe–Ti–V mineralization. All of the intrusions that intrude the dolomite or shales of the Mesoproterozoic Heishan Formation of the Huili Group are composed of three cyclic units from the base upward: a marginal cyclic unit, a lower cyclic unit and an upper cyclic unit. The Fe–Ti–V oxide ore bodies are hosted in the lower and upper cyclic units. The textural relationships between minerals in the intrusions suggest that titanomagnetite formed earlier than silicate grains because euhedral magnetite and ilmenite grains were enclosed in clinopyroxene and plagioclase. Both the magnetitess–ilmenitess intergrowths due to subsolidus oxidation–exsolutions and the relative higher V distribution coefficient between magnetite and silicate melts in the gabbros from the Zhuqing area are different from those of other typical Fe–Ti bearing mafic rocks, suggesting that the oxygen fugacity was low in the gabbric rocks from the Zhuqing area. This finding was further confirmed by calculations based on the compositions of magnetite and ilmenite pairs. The clinopyroxene, magnetite and ilmenite in the intrusions from the Zhuqing area had considerably lower Mg O than those of other typical Fe–Ti oxide-rich complexes, suggesting that the titanomagnetite from the intrusion may have crystallized at a relatively late stage of evolution from a more evolved magma. Titanomagnetite first fractionally crystallized and subsequently settled in the lower parts of the magma chamber, where it concentrated and formed Fe–Ti–V oxide ore layers at the bases of the lower and upper cycles. Moreover, the occurrence of multiple Fe-Ti oxide layers alternating with Fe-Ti oxide-bearing silicate layers suggests that multiple pulses of magma were involved in the formation of the intrusions and related Fe-Ti-V oxide deposits in the Zhuqing area.展开更多
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
文摘Rock magnetism is useful in various applications. Hematite is one of the two most important carriers of magnetism in the natural world and its magnetic features were mostly studied through laboratory experiments using synthetic hematite samples. A gap exists between the magnetic behaviors of hematite contained in the natural rocks and ores and those of synthetic hematite samples. This paper presents the results of a rock magnetism study on the natural hematite ores from the Whaleback mine in the Hamersley Province in the northwest of Western Australia. It was found that high-grade hematite ores carry a much higher remanent magnetization than induced magnetization. Hematite ores with less than 0.1% magnetite appear to have an exponential correlation between the bulk susceptibility and hematite content in weight percentage, different from the commonly accepted linear relationship between the bulk susceptibility and hematite content obtained from synthetic hematite samples. The new knowledge gained from this study contributes to a better understanding of magnetic behaviors of hematite, particularly natural hematite, and hence applications to other relevant disciplines.
文摘The Damiao Fe-Ti-P ore deposit,hosted in the;.74 Ga Damiao anorthosite complex,is the only known anorthosite-hosted deposit in China.The deposit contains hundreds of ore bodies occurring as irregular lenses,veins
文摘13 kinds of iron ores (6 from Australia and 7 from Brazil) were studied on their properties concerning CW (Combined Water) decomposition, FezO3 decomposition and softening-melting in air atmosphere through the characterization method of TG-DSC (Thermogravimetry-Differential Scanning Caloremetry ). The experimental results of the Australian ores and Brazilian ores differ in terms of the initial temperature, temperature range and endothermic amount of CW decomposition,and besides, the content of CW. It is estimated that for every percent increase of CW content in sintering raw material, the extra thermal amount absorbed in the process is about 1.83 x 104 kJ, which equals to the thermal capacity of 0.625 kg of standard coal burning up completely. As to the decomposition of Fe203 ,the initial temperatures, terminal temperatures and temperature ranges of the Australian and Brazilian ores are quite close. However, the endothermic amount of Fe2O3 decomposition of the two turns out rather different: the endothermic capacity of Fe2O3 decomposition of the Australian ores is greater than that of the Brazilian ores. Furthermore, the liquid amount generated in the softening-melting process is closely related to the SiO2 content in iron ore. The higher SiO2 content the ore contains, the more liquid volume it will generate in the softening-melting process of iron ore.
基金supported by the National Basic Research Program of China(Grant No.2012CB416800)。
文摘The predominant types of high-grade iron deposits in China include skarn,sedimentary metamorphic(banded ironformation,BIF-type),continental/submarine volcanic-hosted and magmatic Fe-Ti-Voxide deposits.Based on a comprehensive review of current studies on these deposits,this paper suggests that the oxygen concentration in atmosphere played an important role for the formation of BIFs,whereas the tectonic setting and deep magmatic differentiation processes are more important for the other types.Notably,both high temperature and high pressure experiments and melt inclusion studies indicate that during the differentiation,high temperature magmas could develop iron-rich magma via liquid immiscibility but not pure oxide melt("iron ore magma").Fe-P melt could be generated directly by liquid immiscibility under hydrous and oxidized condition.The formation of high-grade iron deposits is mostly associated with the processes related to multiple stages of superimposition,e.g.,desiliconization and iron enrichment,removal of impurity,and remobilization and re-precipitation of iron.According to the temporal evolution,the high-grade iron deposit could be divided into multi-episode superimposition type(temporally discontinuous mineralization)and multi-stage superimposition type(temporally continuous mineralization).The former is represented by the sedimentary metamorphic iron deposit,and the latter includes those related to magmatic-hydrothermal fluids(e.g.,skarn,volcanic-hosted and magmatic types).
基金the financial support from the National Natural Science Foundation of China(No.51274256)
文摘Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4.
基金supported by the National Natural Science Foundation of China(Grants 41403044,41273049,41572074)
文摘The ca. 1.5 Ga mafic intrusions in the Zhuqing area, predominantly composed of alkaline gabbroic rocks in the Kangdian region of SW China, occur as dykes or irregular small intrusions hosting Fe–Ti–V mineralization. All of the intrusions that intrude the dolomite or shales of the Mesoproterozoic Heishan Formation of the Huili Group are composed of three cyclic units from the base upward: a marginal cyclic unit, a lower cyclic unit and an upper cyclic unit. The Fe–Ti–V oxide ore bodies are hosted in the lower and upper cyclic units. The textural relationships between minerals in the intrusions suggest that titanomagnetite formed earlier than silicate grains because euhedral magnetite and ilmenite grains were enclosed in clinopyroxene and plagioclase. Both the magnetitess–ilmenitess intergrowths due to subsolidus oxidation–exsolutions and the relative higher V distribution coefficient between magnetite and silicate melts in the gabbros from the Zhuqing area are different from those of other typical Fe–Ti bearing mafic rocks, suggesting that the oxygen fugacity was low in the gabbric rocks from the Zhuqing area. This finding was further confirmed by calculations based on the compositions of magnetite and ilmenite pairs. The clinopyroxene, magnetite and ilmenite in the intrusions from the Zhuqing area had considerably lower Mg O than those of other typical Fe–Ti oxide-rich complexes, suggesting that the titanomagnetite from the intrusion may have crystallized at a relatively late stage of evolution from a more evolved magma. Titanomagnetite first fractionally crystallized and subsequently settled in the lower parts of the magma chamber, where it concentrated and formed Fe–Ti–V oxide ore layers at the bases of the lower and upper cycles. Moreover, the occurrence of multiple Fe-Ti oxide layers alternating with Fe-Ti oxide-bearing silicate layers suggests that multiple pulses of magma were involved in the formation of the intrusions and related Fe-Ti-V oxide deposits in the Zhuqing area.