期刊文献+
共找到97,468篇文章
< 1 2 250 >
每页显示 20 50 100
A high-level synthesis based dual-module redundancy with multi-residue detection(DMR-MRD)fault-tolerant method for on-board processing satellite communication systems
1
作者 杨文慧 Chen Xiang +2 位作者 Wang Yu Zhao Ming Wang Jing 《High Technology Letters》 EI CAS 2014年第3期245-252,共8页
On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy par... On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy particles in the space radiation environments.Single event upset(SEU)is one of the major radiation effects,which influences the satellite reliability greatly.Triple modular redundancy(TMR) is a classic and efficient method to mask SEUs.However,TMR uses three identical modules and a comparison logic,the circuit size becomes unacceptable,especially in the resource limited environments such as OBP systems.Considering that,a new SEU-tolerant method based on residue code and high-level synthesis(HLS) is proposed,and the new method is applied to FIR filters,which are typical structures in the OBP systems.The simulation results show that,for an applicable HLS scheduling scheme,area reduction can be reduced by 48.26%compared to TMR,while fault missing rate is 0.15%. 展开更多
关键词 single event upset (SEU) residue code triple modular redundancy (TMR) high-level synthesis (HLS) fault missing rate
下载PDF
ON THE OPTIMIZATION OF VLSI ALLOCATION IN HIGH-LEVEL SYNTHESIS 被引量:1
2
作者 He Zhongli Zhou Dian Hu Qingsheng Zhuang Zhenquan(Department of Electronic Engineering, University of Science and Technology of China, Hefei 230026) (The University of North Carolina at Charlotte) 《Journal of Electronics(China)》 2000年第3期279-288,共10页
Allocation is one of main tasks in the high-level synthesis. It includes module , functional unit allocation, storage allocation and interconnection allocation. This paper models the allocation problem as cluster anal... Allocation is one of main tasks in the high-level synthesis. It includes module , functional unit allocation, storage allocation and interconnection allocation. This paper models the allocation problem as cluster analysis and applies a new algorithm, neighbor state transition (NST) algorithm, for cluster optimization. It is proved that the algorithm produces an asymptotically global optimal solution with the upper bound on the cost function (1 + O(1/n)2-ε)F*, When F" is the cost of the optimum solution, n is the problem size and e is a positive parameter arbitrarily close to zero. The numerical examples show that the NST algorithm produces better results compared to the other known methods. 展开更多
关键词 high-level synthesis OPTIMIZATION ALLOCATION NEIGHBOR state TRANSITION
下载PDF
System-on-Chip Design Using High-Level Synthesis Tools 被引量:7
3
作者 Erdal Oruklu Richard Hanley +3 位作者 Semih Aslan Christophe Desmouliers Fernando M. Vallina Jafar Saniie 《Circuits and Systems》 2012年第1期1-9,共9页
This paper addresses the challenges of System-on-Chip designs using High-Level Synthesis (HLS). HLS tools convert algorithms designed in C into hardware modules. This approach is a practical choice for developing comp... This paper addresses the challenges of System-on-Chip designs using High-Level Synthesis (HLS). HLS tools convert algorithms designed in C into hardware modules. This approach is a practical choice for developing complex applications. Nevertheless, certain hardware considerations are required when writing C applications for HLS tools. Hence, in order to demonstrate the fundamental hardware design concepts, a case studyis presented. Fast Fourier Transform (FFT) implementation in ANSI C is examined in order to explore the important design issues such as concurrency, data recurrences and memory accesses that need to be resolved before generating the hardware using HLS tools. There are additional language constraints that need to be addressed including use of pointers, recursion and floating point types. 展开更多
关键词 System LEVEL DESIGN High LEVEL synthesis Field PROGRAMMABLE GATE Arrays FOURIER Transform
下载PDF
Navigating the pathways:TAR-DNA-binding-protein-43 aggregation,axonal transport,and local synthesis in amyotrophic lateral sclerosis pathology
4
作者 Ori Bar Avi Eran Perlson 《Neural Regeneration Research》 SCIE CAS 2025年第10期2921-2922,共2页
Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and m... Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and metabolic events,which need to be carried out at the right place,time,and intensity.Such mechanisms include axonal transport,local synthesis,and liquid-liquid phase separations.Alterations and malfunctions in these processes are correlated to neurodegenerative diseases such as amyotrophic lateral sclerosis(ALS). 展开更多
关键词 synthesis LOCAL AGGREGATION
下载PDF
A Novel Testability-Oriented Data Path Scheduling Scheme in High-Level Synthesis
5
作者 成本茂 王红 +2 位作者 杨士元 牛道恒 靳洋 《Tsinghua Science and Technology》 SCIE EI CAS 2007年第S1期134-138,共5页
Scheduling is an important step in high-level synthesis and can greatly influence the testability of the synthesized circuits. This paper presents an efficient testability-improved data path scheduling scheme based on... Scheduling is an important step in high-level synthesis and can greatly influence the testability of the synthesized circuits. This paper presents an efficient testability-improved data path scheduling scheme based on mobility scheduling, in which the scheduling begins from the operation with least mobility. In our data path scheduling scheme, the lifetimes of the I/O variables are made as short as possible to enlarge the possibility of the intermediate variables being allocated to the I/O registers. In this way, the controllability/observability of the intermediate variables can be improved. Combined with a weighted graph-based register allocation method, this scheme can obtain better testability. Experimental results on some benchmarks and example circuits show that the proposed scheme can get higher fault coverage compared with other scheduling schemes at little area overhead and even less time delay. 展开更多
关键词 high-level synthesis(HLS) SCHEDULING TESTABILITY MOBILITY
原文传递
A Survey on Performance Optimization of High-Level Synthesis Tools
6
作者 Lan Huang Da-Lin Li +2 位作者 Kang-Ping Wang Teng Gao Adriano Tavares 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第3期697-720,共24页
Field-programmable gate arrays(FPGAs)have recently evolved as a valuable component of the heterogeneous computing.The register transfer level(RTL)design flows demand the designers to be experienced in hardware,resulti... Field-programmable gate arrays(FPGAs)have recently evolved as a valuable component of the heterogeneous computing.The register transfer level(RTL)design flows demand the designers to be experienced in hardware,resulting in a possible failure of time-to-market.High-level synthesis(HLS)permits designers to work at a higher level of abstraction through synthesizing high-level language programs to RTL descriptions.This provides a promising approach to solve these problems.However,the performance of HLS tools still has limitations.For example,designers remain exposed to various aspects of hardware design,development cycles are still time consuming,and the quality of results(QoR)of HLS tools is far behind that of RTL flows.In this paper,we survey the literature published since 2014 focusing on the performance optimization of HLS tools.Compared with previous work,we extend the scope of the performance of HLS tools,and present a set of three-level evaluation criteria,covering from ease of use of the HLS tools to promotion on specific metrics of QoR.We also propose performance evaluation equations for describing the relation between the performance optimization and the QoR.We find that it needs more efforts on the ease of use for efficient HLS tools.We suggest that it is better to draw an analogy between the HLS development process and the embedded system design process,and to provide more elastic HLS methodology which integrates FPGAs virtual machines. 展开更多
关键词 evaluation criterion field-programmable gate array(FPGA) high-level synthesis(HLS) performance optimization quality of results(QoR)
原文传递
The RTL Binding and Mapping Approach of VHDL High-Level Synthesis System HLS/BIT
7
作者 颜宗福 刘明业 《Journal of Computer Science & Technology》 SCIE EI CSCD 1996年第6期562-569,共8页
This paper describes a VHDL high-level synthesis system HLS/BIT with emphasis on its register-transfer level (RTL) binding and technology mapping subsystem. In more detail, the component instantiation mechanism and th... This paper describes a VHDL high-level synthesis system HLS/BIT with emphasis on its register-transfer level (RTL) binding and technology mapping subsystem. In more detail, the component instantiation mechanism and the knowledge-driven approach to RTL technology mapping are also presented. 展开更多
关键词 high-level synthesis RTL synthesis technology mapping
原文传递
LP-LDPC:Three-Level Parallel FPGA Architecture for Fast Prototyping of LDPC Decoder Using High-Level Synthesis
8
作者 Yi-Fan Zhang Lei Sun Qiang Cao 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第6期1290-1306,共17页
Low-Density Parity-heck Codes(LDPC)with excellent error-correction capabilities have been widely used in both data communication and storage fields,to construct reliable cyber-physical systems that are resilient to re... Low-Density Parity-heck Codes(LDPC)with excellent error-correction capabilities have been widely used in both data communication and storage fields,to construct reliable cyber-physical systems that are resilient to real-world noises.Fast prototyping field-programmable gate array(FPGA)-based decoder is essential to achieve high decoding performance while accelerating the development process.This paper proposes a three-level parallel architecture,TLP-LDPC,to achieve high throughput by fully exploiting the characteristics of both LDPC and underlying hardware while effectively scaling to large-size FPGA platforms.The three-level parallel architecture contains a low-level decoding unit,a mid-level multi-unit decoding core,and a high-level multi-core decoder.The low-level decoding unit is a basic LDPC computation component that effectively combines the features of the LDPC algorithm and hardware with the specific structure(e.g.,Look-Up-Table,LUT)of the FPGA and eliminates potential data conflicts.The mid-level decoding core integrates the input/output and multiple decoding units in a well-balancing pipelined fashion.The top-level multi-core architecture conveniently makes full use of board-level resources to improve the overall throughput.We develop an LDPC C++code with dedicated pragmas and leverage HLS tools to implement the TLP-LDPC architecture.Experimental results show that TLP-LDPC achieves 9.63 Gbps end-to-end decoding throughput on a Xilinx Alveo U50 platform,3.9x higher than existing HLS-based FPGA implementations. 展开更多
关键词 low-density parity-check(LDPC) high-level synthesis(HLS) field-programmable gate array(FPGA)
原文传递
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:4
9
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis ELECTROCATALYSTS
下载PDF
The structure-directing role of heterologous seeds in the synthesis of zeolite 被引量:2
10
作者 Haoyang Zhang Binyu Wang Wenfu Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期792-801,共10页
Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recen... Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recently applied in energy storage.Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites.In some cases,the target zeolite cannot be formed in the absence of seed zeolite.In homologous seed-assisted synthesis,the structure of the seed zeolite is the same to that of the target zeolite,while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis.In this review,we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the“common composite building units(CBUs)hypothesis”and the“common secondary building units(SBUs)hypothesis”.However,both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses.Finally,we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite. 展开更多
关键词 ZEOLITE Heterologous seed synthesis Structure-directing effect
下载PDF
Facile synthesis of hierarchical NaX zeolite from natural kaolinite for efficient Knoevenagel condensation 被引量:2
11
作者 Wen Xiao Peng Dong +6 位作者 Chan Wang Jingdong Xu Tiesen Li Haibo Zhu Tinghai Wang Renwei Xu Yuanyuan Yue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期75-84,共10页
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien... Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing. 展开更多
关键词 Hierarchical NaX zeolite Template-free synthesis Natural kaolinite Knoevenagel condensation
下载PDF
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
12
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis Heat integration Simulation-based optimization Industrial organosilicon separation
下载PDF
Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation 被引量:1
13
作者 Hengyuan Liu Xingjiang Wu +2 位作者 Yuhao Geng Xin Li Jianhong Xu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期544-555,共12页
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-... Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field. 展开更多
关键词 Iridium nanodots CARBON Microfluidic technology Efficient synthesis Electrocatalytic nitrogen fixation
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
14
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
Boosting Fischer-Tropsch Synthesis via Tuning of N Dopants in TiO_(2)@CN-Supported Ru Catalysts 被引量:1
15
作者 Xincheng Li Yunhao Liu +10 位作者 Dejian Zhao Shuaishuai Lyu Jingwei Ye Xiaoshen Li Peipei Wu Ye Tian Yingtian Zhang Tong Ding Song Song Qingpeng Cheng Xingang Li 《Transactions of Tianjin University》 EI CAS 2024年第1期90-102,共13页
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ... Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%. 展开更多
关键词 Fischer-Tropsch synthesis N-doped carbon materials Ruthenium catalyst Pyridinic N Metal-N interaction
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
16
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism synthesis technique Optimization design
下载PDF
Metagenomic analysis revealing the metabolic role of microbial communities in the free amino acid biosynthesis of Monascus rice vinegar during fermentation 被引量:1
17
作者 Hang Gao Jian Zhang +4 位作者 Li Liu Lijun Fu Yan Zhao Germán Mazza Xin Zhang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2317-2326,共10页
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw... Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation. 展开更多
关键词 Monascus rice vinegar Metagenomic analysis Free amino acid synthesis Metabolic pathway Microbial distribution
下载PDF
Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes 被引量:1
18
作者 Kwadwo Asare Owusu Zhaoyang Wang +7 位作者 Ali Saad Felix Ofori Boakye Muhammad Asim Mushtaq Muhammad Tahir Ghulam Yasin Dongqing Liu Zhengchun Peng Xingke Cai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期277-286,共10页
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ... Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials. 展开更多
关键词 amorphous nanosheets aqueous supercapacitor high volumetric/areal energy density NiCo-LDH room temperature synthesis
下载PDF
Synthesis and modification strategies of g-C_(3)N_(4) nanosheets for photocatalytic applications 被引量:5
19
作者 Long Chen Michael A.Maigbay +1 位作者 Miao Li Xiaoqing Qiu 《Advanced Powder Materials》 2024年第1期49-79,共31页
Graphitic carbon nitride nanosheets(CNNs)become the most promising member in the carbon nitride family benefitted from their two-dimensional structural features.Recently,great endeavors have been made in the synthesis... Graphitic carbon nitride nanosheets(CNNs)become the most promising member in the carbon nitride family benefitted from their two-dimensional structural features.Recently,great endeavors have been made in the synthesis and modification of CNNs to improve their photocatalytic properties,and many exciting progresses have been gained.In order to elucidate the fundamentals of CNNs based catalysts and provide the insights into rational design of photocatalysis system,we describe recent progress made in CNNs preparation strategies and their applications in this review.Firstly,the physicochemical properties of CNNs are briefly introduced.Secondly,the synthesis approaches of CNNs are reviewed,including top-down stripping strategies(thermal,gas,liquid,and composite stripping)and bottom-up precursor molecules design strategies(solvothermal,template,and supramolecular self-assembly method).Subsequently,the modification strategies based on CNNs in recent years are discussed,including crystal structure design,doping,surface functionalization,constructing 2D heterojunction,and anchoring single-atom.Then the multifunctional applications of g-C_(3)N_(4) nanosheet based materials in photocatalysis including H_(2) evolution,O_(2) evolution,overall water splitting,H_(2)O_(2) production,CO_(2) reduction,N_(2) fixation,pollutant removal,organic synthesis,and sensing are highlighted.Finally,the opportunities and challenges for the development of high-performance CNNs photocatalytic systems are also prospected. 展开更多
关键词 G-C_(3)N_(4) NANOSHEETS synthesis strategies Modified strategies Photocatalytic applications
下载PDF
Nucleosynthesis in the little bang
20
作者 Marcus Bleicher 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期1-4,共4页
A new approach based on relativistic kinetic equations is proposed to solve the long-standing puzzle of light cluster formation, also called nucleosynthesis, in high-energy heavy-ion collisions. This method addresses ... A new approach based on relativistic kinetic equations is proposed to solve the long-standing puzzle of light cluster formation, also called nucleosynthesis, in high-energy heavy-ion collisions. This method addresses the tension between STAR data and previous studies relying on either statistical equilibrium or coalescence approaches. 展开更多
关键词 synthesis RELATIVISTIC CLUSTER
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部