研究了利用发动机缸体振动信号进行爆震检测和强度评价的方法,提出了一种基于广义正交匹配追踪的改进K-均值奇异值分解(K-means singular value decomposition,简称K-SVD)信号处理方法,将稀疏表达理论引入了发动机爆震特征识别领域。首...研究了利用发动机缸体振动信号进行爆震检测和强度评价的方法,提出了一种基于广义正交匹配追踪的改进K-均值奇异值分解(K-means singular value decomposition,简称K-SVD)信号处理方法,将稀疏表达理论引入了发动机爆震特征识别领域。首先,对缸体振动信号进行稀疏分解,得到涵盖爆震特征的稀疏字典以及针对单个信号的稀疏系数;然后,计算重构信号的四阶累积量的自然对数,提出了一种爆震强度评价指标。计算结果表明,该方法对于混有强烈背景噪声的缸体振动信号表现出了良好的降噪和特征提取能力,且提高了运算效率,能够准确区分强烈爆震、轻微爆震和正常燃烧3种状态,证明了该方法在发动机爆震识别领域的应用价值。展开更多
文摘研究了利用发动机缸体振动信号进行爆震检测和强度评价的方法,提出了一种基于广义正交匹配追踪的改进K-均值奇异值分解(K-means singular value decomposition,简称K-SVD)信号处理方法,将稀疏表达理论引入了发动机爆震特征识别领域。首先,对缸体振动信号进行稀疏分解,得到涵盖爆震特征的稀疏字典以及针对单个信号的稀疏系数;然后,计算重构信号的四阶累积量的自然对数,提出了一种爆震强度评价指标。计算结果表明,该方法对于混有强烈背景噪声的缸体振动信号表现出了良好的降噪和特征提取能力,且提高了运算效率,能够准确区分强烈爆震、轻微爆震和正常燃烧3种状态,证明了该方法在发动机爆震识别领域的应用价值。