The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requiremen...The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.展开更多
The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled l...The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.展开更多
A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as ...A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 d B, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.展开更多
Lithium-sulfur(Li-S) batteries as extremely promising high-density energy storage devices have attracted extensive concern. However, practical applications of Li-S batteries are severely restricted by not only intrins...Lithium-sulfur(Li-S) batteries as extremely promising high-density energy storage devices have attracted extensive concern. However, practical applications of Li-S batteries are severely restricted by not only intrinsic polysulfides shuttle resulting from their concentration gradient diffusion and sluggish conversion kinetics but also serious safety issue caused by thermolabile and combustible polymer separators.Herein, it is presented for the first time that a robust and multifunctional separator with urchin-like Co-doped Fe OOH microspheres and multiwalled carbon nanotubes(MWCNTs) as an interlayer simultaneously achieves to suppress polysulfides shuttle as well as improves thermotolerance and nonflammability of commercial PP separator. Accordingly, Li-S batteries with modified separator exhibit remarkable performance in a wide range temperatures of-25–100 ℃. Typically, under 25 ℃, ultrahigh initial capacities of 1441 and 827.29 m A h g-1 at 1 C and 2 C are delivered, and remained capacities of 936 and 663.18 mA h g-1 can be obtained after 500 cycles, respectively. At 0.1 C, the S utilization can reach up to 97%. Significantly, at 1 C, the batteries also deliver an excellent performance with remained capacities of high to862.3, 608.4 and 420.6 m A h g-1 after 100, 300 and 450 cycles under 75, 0 and-25 ℃, respectively. This work provides a new insight for developing stable and safe high-performance Li-S batteries.展开更多
In this paper, we present a model of the Brownian motor in a feedback controlled ratchet, in which the application of the flashing potential depends on the state of the particle to be controlled. We derive an analytic...In this paper, we present a model of the Brownian motor in a feedback controlled ratchet, in which the application of the flashing potential depends on the state of the particle to be controlled. We derive an analytical expression for the velocity induced by the feedback ratchet, which is a function of several parameters, including the ratio of the two switching temperatures and the asymmetry parameter of the potential field. The motor shows a current inversion when either parameter is varied.展开更多
In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results ...In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results showed that strong phosphorescence could be observed in b-cyclodextrin aqueous solution only at low pH value. This system combined AND and NOT function to produce a three-input inhibit (INH) logic gate.展开更多
The heat transfer characteristic of honeycomb ceramic regenerator was optimized by the perturbation analytical-numerical method. The results show that there is a temperature efficiency peak and the corresponding optim...The heat transfer characteristic of honeycomb ceramic regenerator was optimized by the perturbation analytical-numerical method. The results show that there is a temperature efficiency peak and the corresponding optimal switch time. The decrease of air oxygen concentration leads to the decrease of maximum temperature efficiency. Optimal switch time is directly proportional to the matrix thickness. The solid heat conduction along the flow direction and the regenerator heat storage capacity of the unit volume have no impact on maximum temperature efficiency and optimal switch time. The temperature efficiency tendency based on the semi-analysis is the same as dispersion combustion tests with low oxygen concentration, and optimal switch time of 2-4 s agrees well with that of 4 s in high-temperature gasification tests. The possibility of design, operate and control a thin-walled regenerator with high efficiency by means of the perturbation method is proved.展开更多
With its commercialization, the second-generation(2G) high temperature superconducting(HTS) RE–Ba–Cu–O(REBCO, RE is rare earth) tape is extensively applied to the superconducting magnets in the high magnetic fields...With its commercialization, the second-generation(2G) high temperature superconducting(HTS) RE–Ba–Cu–O(REBCO, RE is rare earth) tape is extensively applied to the superconducting magnets in the high magnetic fields. However,unlike low temperature superconducting(LTS) magnets, the HTS magnet cannot operate in the persistent current mode(PCM) due to the immature superconducting soldering technique. In this paper, an exciting method for two HTS sub-loops,so-called charging and load loops, is proposed by flux pump consisting of exciting coil and controllable thermal switch.Two HTS sub-loops are made of an REBCO tape with two slits. An exciting coil with iron core is located in one sub-loop and is supplied with a triangular waveform current so that magnetic field is generated in another sub-loop. The influence of magnetic flux on induced current in load loop is presented and verified in experiment at 77 K. The relationship between the induced magnetic flux density and the current on the sub-loops having been calibrated, magnetic flux density, and induced current are obtained. The results show that the HTS sub-loops can be excited by a coil with thermal switch and the induced current increases with magnetic flux of exciting coil increasing, which is promising for persistent current operation mode of HTS magnets.展开更多
Understanding of the mechanisms of neural phase transitions is crucial for clarifying cognitive processes in the brain. We investigate a neural oscillator that undergoes different bifurcation transitions from the big ...Understanding of the mechanisms of neural phase transitions is crucial for clarifying cognitive processes in the brain. We investigate a neural oscillator that undergoes different bifurcation transitions from the big saddle homoclinic orbit type to the saddle node on an invariant circle type, and the saddle node on an invariant circle type to the small saddle homoclinic orbit type. The bifurcation transitions are accompanied by an increase in thermodynamic temperature that affects the voltage-gated ion channel in the neural oscillator. We show that nonlinear and thermodynamical mechanisms are responsible for different switches of the frequency in the neural oscillator. We report a dynamical role of the phase response curve in switches of the frequency, in terms of slopes of frequency-temperature curve at each bifurcation transition. Adopting the transition state theory of voltagegated ion channel dynamics, we confirm that switches of the frequency occur in the first-order phase transition temperature states and exhibit different features of their potential energy derivatives in the ion channel. Each bifurcation transition also creates a discontinuity in the Arrhenius plot used to compute the time constant of the ion channel.展开更多
In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as satur...In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as saturable absorber. The rate equations describing the dynamics of laser action are numerically solved simultaneously with the temperature conductivity heat equation to depict the transient temperature distribution. The study has been performed in the cylindrical coordinates to characterize the temperature distribution in the axial and radial directions. The thermal transient time in both directions as well as the thermal focal length are calculated. The temporal behavior of the temperature distribution has been illustrated in a 3-dimensional diagram.展开更多
A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc...A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc in a model circuit breaker is studied by means of computational fluid dynamics(CFD)simulations and optical emission spectroscopy(OES)in this contribution.Experimental investigations are performed in carbon dioxide(CO2)at absolute filling pressures of 0.1 and 0.5 MPa.CFD simulations are carried out based on a model of the arcing zone including a consistent treatment of the radiation transport and the wall ablation.Carbon ion line radiation is analysed in the experiment using an optical path in the heating channel between the electrodes inside the nozzle system.The pressure value in the arc is estimated based on the line width-intensity dependence.Obtained values correspond to the measured pressure outside the arc.For the temperature profiles,a good agreement within the accuracy of the approaches is observed between the CFD simulations and the results of OES.展开更多
Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DN...Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ss DNA will collapse due to the existence of electrostatic interaction between ss DNA and charged nanoparticle surface; ii)for the short ss DNA chains with the number of bases less than 10, the switching of ss DNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ss DNA and charged nanoparticle surface becomes weak dramatically, and ss DNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ss DNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ss DNA will not happen if the grafting densities are too high.展开更多
High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release schem...High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.展开更多
基金Financial support from the National Natural Science Foundation of China(22279065 and 21935006)is gratefully acknowledged.
文摘The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532261 and 1630141)
文摘The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61275059 and 61307062)
文摘A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 d B, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.
基金the National Natural Science Foundation of China(51773134)the Program for the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(51721091)+2 种基金the Sichuan Province Science and Technology Project(2019YFH0112)the Sichuan Province Youth Science and Technology Innovation Team(2017TD0006)the Fundamental Research Funds for the Central Universities(2017SCU04A14 and YJ201821)。
文摘Lithium-sulfur(Li-S) batteries as extremely promising high-density energy storage devices have attracted extensive concern. However, practical applications of Li-S batteries are severely restricted by not only intrinsic polysulfides shuttle resulting from their concentration gradient diffusion and sluggish conversion kinetics but also serious safety issue caused by thermolabile and combustible polymer separators.Herein, it is presented for the first time that a robust and multifunctional separator with urchin-like Co-doped Fe OOH microspheres and multiwalled carbon nanotubes(MWCNTs) as an interlayer simultaneously achieves to suppress polysulfides shuttle as well as improves thermotolerance and nonflammability of commercial PP separator. Accordingly, Li-S batteries with modified separator exhibit remarkable performance in a wide range temperatures of-25–100 ℃. Typically, under 25 ℃, ultrahigh initial capacities of 1441 and 827.29 m A h g-1 at 1 C and 2 C are delivered, and remained capacities of 936 and 663.18 mA h g-1 can be obtained after 500 cycles, respectively. At 0.1 C, the S utilization can reach up to 97%. Significantly, at 1 C, the batteries also deliver an excellent performance with remained capacities of high to862.3, 608.4 and 420.6 m A h g-1 after 100, 300 and 450 cycles under 75, 0 and-25 ℃, respectively. This work provides a new insight for developing stable and safe high-performance Li-S batteries.
基金Project supported by the Educational Commission of Henan Province, China (Grant No. 2006140015)the Science and Technology Planning Project of Henan Province, China (Grant No. 092300410142)
文摘In this paper, we present a model of the Brownian motor in a feedback controlled ratchet, in which the application of the flashing potential depends on the state of the particle to be controlled. We derive an analytical expression for the velocity induced by the feedback ratchet, which is a function of several parameters, including the ratio of the two switching temperatures and the asymmetry parameter of the potential field. The motor shows a current inversion when either parameter is varied.
文摘In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results showed that strong phosphorescence could be observed in b-cyclodextrin aqueous solution only at low pH value. This system combined AND and NOT function to produce a three-input inhibit (INH) logic gate.
基金Project(2001AA514013) supported by the National High Technology Research and Development Programof China
文摘The heat transfer characteristic of honeycomb ceramic regenerator was optimized by the perturbation analytical-numerical method. The results show that there is a temperature efficiency peak and the corresponding optimal switch time. The decrease of air oxygen concentration leads to the decrease of maximum temperature efficiency. Optimal switch time is directly proportional to the matrix thickness. The solid heat conduction along the flow direction and the regenerator heat storage capacity of the unit volume have no impact on maximum temperature efficiency and optimal switch time. The temperature efficiency tendency based on the semi-analysis is the same as dispersion combustion tests with low oxygen concentration, and optimal switch time of 2-4 s agrees well with that of 4 s in high-temperature gasification tests. The possibility of design, operate and control a thin-walled regenerator with high efficiency by means of the perturbation method is proved.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51977078)。
文摘With its commercialization, the second-generation(2G) high temperature superconducting(HTS) RE–Ba–Cu–O(REBCO, RE is rare earth) tape is extensively applied to the superconducting magnets in the high magnetic fields. However,unlike low temperature superconducting(LTS) magnets, the HTS magnet cannot operate in the persistent current mode(PCM) due to the immature superconducting soldering technique. In this paper, an exciting method for two HTS sub-loops,so-called charging and load loops, is proposed by flux pump consisting of exciting coil and controllable thermal switch.Two HTS sub-loops are made of an REBCO tape with two slits. An exciting coil with iron core is located in one sub-loop and is supplied with a triangular waveform current so that magnetic field is generated in another sub-loop. The influence of magnetic flux on induced current in load loop is presented and verified in experiment at 77 K. The relationship between the induced magnetic flux density and the current on the sub-loops having been calibrated, magnetic flux density, and induced current are obtained. The results show that the HTS sub-loops can be excited by a coil with thermal switch and the induced current increases with magnetic flux of exciting coil increasing, which is promising for persistent current operation mode of HTS magnets.
基金Supported by JST,CREST,and JSPS KAKENHI under Grant No 15H05919
文摘Understanding of the mechanisms of neural phase transitions is crucial for clarifying cognitive processes in the brain. We investigate a neural oscillator that undergoes different bifurcation transitions from the big saddle homoclinic orbit type to the saddle node on an invariant circle type, and the saddle node on an invariant circle type to the small saddle homoclinic orbit type. The bifurcation transitions are accompanied by an increase in thermodynamic temperature that affects the voltage-gated ion channel in the neural oscillator. We show that nonlinear and thermodynamical mechanisms are responsible for different switches of the frequency in the neural oscillator. We report a dynamical role of the phase response curve in switches of the frequency, in terms of slopes of frequency-temperature curve at each bifurcation transition. Adopting the transition state theory of voltagegated ion channel dynamics, we confirm that switches of the frequency occur in the first-order phase transition temperature states and exhibit different features of their potential energy derivatives in the ion channel. Each bifurcation transition also creates a discontinuity in the Arrhenius plot used to compute the time constant of the ion channel.
文摘In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as saturable absorber. The rate equations describing the dynamics of laser action are numerically solved simultaneously with the temperature conductivity heat equation to depict the transient temperature distribution. The study has been performed in the cylindrical coordinates to characterize the temperature distribution in the axial and radial directions. The thermal transient time in both directions as well as the thermal focal length are calculated. The temporal behavior of the temperature distribution has been illustrated in a 3-dimensional diagram.
文摘A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc in a model circuit breaker is studied by means of computational fluid dynamics(CFD)simulations and optical emission spectroscopy(OES)in this contribution.Experimental investigations are performed in carbon dioxide(CO2)at absolute filling pressures of 0.1 and 0.5 MPa.CFD simulations are carried out based on a model of the arcing zone including a consistent treatment of the radiation transport and the wall ablation.Carbon ion line radiation is analysed in the experiment using an optical path in the heating channel between the electrodes inside the nozzle system.The pressure value in the arc is estimated based on the line width-intensity dependence.Obtained values correspond to the measured pressure outside the arc.For the temperature profiles,a good agreement within the accuracy of the approaches is observed between the CFD simulations and the results of OES.
基金Project supported by the Joint Funds of Xinjiang Natural Science Foundation,China(Grant No.2015211C298)
文摘Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ss DNA will collapse due to the existence of electrostatic interaction between ss DNA and charged nanoparticle surface; ii)for the short ss DNA chains with the number of bases less than 10, the switching of ss DNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ss DNA and charged nanoparticle surface becomes weak dramatically, and ss DNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ss DNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ss DNA will not happen if the grafting densities are too high.
文摘High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.