In order to evaluate the tendency of mechanical properties degrudation due to weld-ing and other processing in materials used for supporting coils in super conducting rnaguets utilized in thermonuclear jusion reactore...In order to evaluate the tendency of mechanical properties degrudation due to weld-ing and other processing in materials used for supporting coils in super conducting rnaguets utilized in thermonuclear jusion reactore, a small punch (SP) test was used.This test, which was originally developed to study irradiation damage using miniatursized specimens was performed at 77 and 4 K for solution treated and sensitized JN1 austenitic stainless steel, a candidate cryogenic structural material. The area under the load-deflection curve up to the maximum applied load in SP test was defined as the SP enerpy, to characterize the resistance to fracture. Although solution treated material exhibited ductile fracture mode with high SP enerpy, embrittlement behavior due to sensitization at 650-800°for 1-5 h was shown clearlg by SP test with brittle intergranular fracture and decreased SP enerpy. Comparison of the results obtained by SP test with those by fracture toughness test showed the usefulness of SP test for evaluation of sensitization induced embrittlement at cryogenic temperature. The re-sults obtained in this study can be very usefol in predicting the degradation due to welding and other processing in cryogenic materials.展开更多
Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it ha...Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it has improved impact wear resistance, hard abrasive wear, erosion wear performance, and impact toughness.The metallurgical properties of such austenitic wear-resistant steel lead to the risk of failure because of hot cracking defects in the welded structure.In wear-resistant applications, evaluating hot cracking susceptibility is necessary to avoid the effect of welding defects.In this study, the Varestraint test is used to quantitatively analyze and evaluate the hot cracking susceptibility of BTW1 austenitic high-manganese wear-resistant steel.The test results show that by controlling the content of impurity elements and grain refinement, BTW1 austenitic high-manganese wear-resistant steel effectively reduces hot cracking tendency and has a low incidence of hot cracking under small strain conditions.The developed matching welding process can effectively avoid the influence of hot cracking susceptibility.展开更多
The formation of precipitated austenite in 9% Ni steel exposed at the temperature of α+γ re- gion and its influence on impact tonghness at cryogenic temperature have been studied. Austenite-rich and ferrite-rich ban...The formation of precipitated austenite in 9% Ni steel exposed at the temperature of α+γ re- gion and its influence on impact tonghness at cryogenic temperature have been studied. Austenite-rich and ferrite-rich bands are formed during soaking because of the re-distribu- tion of elements of C,N and Ni.The former phase is enriched of Ni,Mn,C and N,while the latter one is relatively pure.Part of the austenite formed at intermediate temperatures trans- forms into martensite when the steel is cooled down to room temperature.The complex struc- ture which consists of fine martensite and austenite exhibits a moderate strength and high enough cryogenic toughness.The austenite enriched of C,N and Ni is still stable at the cryogenic temperature.The tearing ridges on the impact fracture surface is densely occupied by the precipitated austenite,elongated along the tearing direction.One of the important cause of the excellent eryogenic properties is that the precipitated austenite absorbs the impurities and thus purifies the matrix of the steel.展开更多
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffracti...The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-fiat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.展开更多
Cryogenic treatment has been increasingly applied to enhance the hardness, antiwear ability and fatigue performance of die steel. On the basis of reading a large number of research papers and references across the wor...Cryogenic treatment has been increasingly applied to enhance the hardness, antiwear ability and fatigue performance of die steel. On the basis of reading a large number of research papers and references across the world, the author makes a detailed analysis and brief summary of the influence of cryogenic treatment on microstructure after quenching process or quenching plus tempering process, on first and second carbides, on content of retained austenite, on surface hardness, on mechanical properties and antiwear ability of die steels. It’s proved that cryogenic treatment on die steel significantly improves its hardness, antiwear capacity and service life. It’s the cryogenic process to make die steel have higher hardness, better antiwear ability, better ductility and longer service life because cryogenic process actually has a good influence on die steel of its microstructure, retained austenite volume and amount and size of the second carbide.展开更多
Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting,and the homogenized forged billet was hot-rolled.The plastic deformation mechanism was investigated through tensile testi...Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting,and the homogenized forged billet was hot-rolled.The plastic deformation mechanism was investigated through tensile testing of the hot-rolled sample.Different characterization techniques such as scanning electron microscopy,transmission electron microscopy,electron backscattered diffraction,and X-ray diffraction were used to analyze the microstructural evolution of steel under different strain levels.The steel had a single austenite phase,which was stable during deformation.After hot rolling,annealing twins were observed in the microstructure of the steel.The steel showed an excellent combination of mechanical properties,like a tensile strength of 527 MPa,impact energy of 203 J at−196℃,and an elongation of 67%till fracture.At the initial deformation stage,the dislocations were generated within the austenite grains,entangled and accumulated at the grain boundaries and annealing twin boundaries.Annealing twins participated in plastic deformation and hindered the dislocation movement.As the deformation progressed,the dislocation slip was hindered and produced stress concentration,and the stacking faults evolved into mechanical twins,which released the stress concentration and delayed the necking.展开更多
A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorde...A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.展开更多
The application of components often depends to a large extent on the properties of the surface layer.A novel process chain for the production of components with a hardened surface layer from metastable austenitic stee...The application of components often depends to a large extent on the properties of the surface layer.A novel process chain for the production of components with a hardened surface layer from metastable austenitic steel was presented.The investigated metastable austenitic AISI 347 steel was cold-drawn in solution annealed condition at cryogenic temperatures for pre-hardening,followed by post-hardening via cryogenic turning.The increase in hardness in both processes was due to strain hardening and deformation-induced phase transformation from y-austenite to^-martensite.Cryogenic turning experiments were carried out with solution annealed AISI 347 steel as well as with solution annealed and subsequently cold-drawn AISI 347 steel.The thermomechanical load of the workpiece surface layer during the turning process as well as the resulting surface morphology was characterized.The forces and temperatures were higher in turning the cold-drawn AISI 347 steel than turning the solution annealed AISI 347 steel.After cryogenic turning of the solution annealed material,deformation-induced phase transformation and a significant increase in hardness were detected in the near-surface layer.In contrast,no additional phase transformation was observed after cryogenic turning of the cold-drawn AISI 347 steel.The maximum hardness in the surface layer was similar,whereas the hardness in the core of the cold-drawn AISI 347 steel was higher compared to that in the solution annealed AISI 347 steel.展开更多
It has been widely demonstrated that addition of Ni in low-carbon steels can effectively improve the cryogenic toughness, but the mechanism behind it has yet to be clarified. In the present work, the evolutions of mic...It has been widely demonstrated that addition of Ni in low-carbon steels can effectively improve the cryogenic toughness, but the mechanism behind it has yet to be clarified. In the present work, the evolutions of microstructure and mechanical properties after quenching and tempering for Ni-containing cryogenic steels with different Ni contents (3.5-9 wt%) were investigated. The results showed that after quenching and tempering, the Ni-containing cryogenic steels were composed of tempered martensite and reversed austenite. The volume fraction of reversed austenite has increased from 0 up to 6.3% when the Ni content increases from 3.5% to 9%. The Charpy impact tests indicated that the low- temperature toughness was markedly improved with the increase in Ni content, which can be correlated with the increase in reversed austenite amount. The main contribution of reversed austenite to the toughness lies in: (1) the elimination of cementite precipitates improved the plastic deformation capacity of matrix, and (2) the crack propagation is hindered through plastic deformation.展开更多
The effect of deep cryogenic treatment on the formation of reversed austenite (RA) in super martensitic stainless steel was investigated. RA was found to form in steels without (A) and with (B) deep cryogenic tr...The effect of deep cryogenic treatment on the formation of reversed austenite (RA) in super martensitic stainless steel was investigated. RA was found to form in steels without (A) and with (B) deep cryogenic treatment. The volume fraction of RA initially increased and then decreased with increasing tempering temperature over 550-- 750 ℃ for the two steels, which were quenched at 1050 ℃. In addition, for both with and without deep cryogenic treatment, the RA content reached a maximum value at 650 ℃ although the RA content in steel B was greater than that in steel A over the entire range of tempering temperatures. Furthermore, the hardness (HRC) of steel B was greater than that of steel A at tempering temperatures of 550--750 ℃. From these results, the basic mechanism for the formation of RA in steels A and B was determined to be Ni diffusion. However, there were more Ni enriched points, a lower degree of enrichment, and a shorter diffusion path in steel B. It needed to be noted that the shapes of the RA consisted of blocks and stripes in both steels. These shapes resulted because the RA redissolved and trans- formed to martensite along the martensitic lath boundaries when the tempering temperature was 650--750 ℃, and a portion of RA in the martensitie lath divided the originally wider martensitic laths into a number of thinner ones. In- terestingly, the RA redissolved more rapidly in steel B and consequently resulted in a stronger refining effect.展开更多
The effects of traditional heat treatment(quenching and then tempering)and deep cryogenic treatment on the microstructure and mechanical properties of a low-carbon high-alloy martensitic bearing steel were studied by ...The effects of traditional heat treatment(quenching and then tempering)and deep cryogenic treatment on the microstructure and mechanical properties of a low-carbon high-alloy martensitic bearing steel were studied by Rockwell hardness test,X-ray diffractometry,scanning electron microscopy and transmission electron microscopy.The results show that the deep cryogenic treatment promotes the transformation of the retained austenite to martensite during cooling,which leads to the hardness of the sample after deep cryogenic treatment higher than that at the quenched state.Also,the carbon content in the martensite matrix after different treatments was calculated and the results indicated that deep cryogenic treatment can promote the segregation of carbon atoms in martensite to dislocations.The segregated carbon atoms act as and grow into nuclei for the formation of fine carbide particles during subsequent tempering.And this resulted in the fact that the hardness of the tempered experimental steel after deep cryogenic treatment is higher than that without deep cryogenic treatment.展开更多
Microstructure and mechanical properties in core of a carburizing 20CrNi2MoV bearing steel subjected to cryogenic treatment were investigated.Conventional treatment sample was quenched and tempered at 180℃ for 2 h.Cr...Microstructure and mechanical properties in core of a carburizing 20CrNi2MoV bearing steel subjected to cryogenic treatment were investigated.Conventional treatment sample was quenched and tempered at 180℃ for 2 h.Cryogenic treatment samples were quenched,cryogenically treated at−80 and−196℃ for 4 h,slowly returned to room temperature and thereafter tempered at 180℃ for 2 h,and finally tempered at 180℃ for 2 h.The scanning electron microscope,electron backscattering diffraction,X-ray diffraction and transmission electron microscope were adopted for microstructure characterization.The results show that cryogenic treatment increases the fraction of high-angle grain boundaries and the precipitation of finely dispersed carbides in the matrix,decreases the volume fraction of inter-lath retained austenite,and hence improves the strength and hardness.Compared with the conventional treatment,the hardness,yield strength and ultimate tensile strength of the steel after cryogenic treatment are increased by 11.7%,12.6%and 18.3%,respectively,while the impact energy is decreased by 9.8%.展开更多
The effect of Mn content on the microstructure and cryogenic mechanical properties of a 7% Ni steel was investigated within the Mn content range from 0.13% to 0.36%. The microstructure of the steel as determined by op...The effect of Mn content on the microstructure and cryogenic mechanical properties of a 7% Ni steel was investigated within the Mn content range from 0.13% to 0.36%. The microstructure of the steel as determined by optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscattering diffraction and X-ray diffraction was presented, and the low-temperature mechanical properties were given. The size of prior austenite grain did not change a lot as Mn content increased. Film-like reversed austenite, having high stability, was found mainly in the specimens with lower Mn content; however, in the specimen with the highest Mn content, the role of Mn was not obvious in stabilizing reversed austenite. Besides, with increasing Mn content, the amount of reversed austenite at grain boundaries gradually decreased. The variable Mn content had a significant effect on cryogenic toughness~ but not apparent on cryogenic tensile strength or yield strength. An excellent combination of cryogenic tensile and impact properties was obtained when Mn content of steel was 0.13%.展开更多
文摘In order to evaluate the tendency of mechanical properties degrudation due to weld-ing and other processing in materials used for supporting coils in super conducting rnaguets utilized in thermonuclear jusion reactore, a small punch (SP) test was used.This test, which was originally developed to study irradiation damage using miniatursized specimens was performed at 77 and 4 K for solution treated and sensitized JN1 austenitic stainless steel, a candidate cryogenic structural material. The area under the load-deflection curve up to the maximum applied load in SP test was defined as the SP enerpy, to characterize the resistance to fracture. Although solution treated material exhibited ductile fracture mode with high SP enerpy, embrittlement behavior due to sensitization at 650-800°for 1-5 h was shown clearlg by SP test with brittle intergranular fracture and decreased SP enerpy. Comparison of the results obtained by SP test with those by fracture toughness test showed the usefulness of SP test for evaluation of sensitization induced embrittlement at cryogenic temperature. The re-sults obtained in this study can be very usefol in predicting the degradation due to welding and other processing in cryogenic materials.
文摘Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it has improved impact wear resistance, hard abrasive wear, erosion wear performance, and impact toughness.The metallurgical properties of such austenitic wear-resistant steel lead to the risk of failure because of hot cracking defects in the welded structure.In wear-resistant applications, evaluating hot cracking susceptibility is necessary to avoid the effect of welding defects.In this study, the Varestraint test is used to quantitatively analyze and evaluate the hot cracking susceptibility of BTW1 austenitic high-manganese wear-resistant steel.The test results show that by controlling the content of impurity elements and grain refinement, BTW1 austenitic high-manganese wear-resistant steel effectively reduces hot cracking tendency and has a low incidence of hot cracking under small strain conditions.The developed matching welding process can effectively avoid the influence of hot cracking susceptibility.
文摘The formation of precipitated austenite in 9% Ni steel exposed at the temperature of α+γ re- gion and its influence on impact tonghness at cryogenic temperature have been studied. Austenite-rich and ferrite-rich bands are formed during soaking because of the re-distribu- tion of elements of C,N and Ni.The former phase is enriched of Ni,Mn,C and N,while the latter one is relatively pure.Part of the austenite formed at intermediate temperatures trans- forms into martensite when the steel is cooled down to room temperature.The complex struc- ture which consists of fine martensite and austenite exhibits a moderate strength and high enough cryogenic toughness.The austenite enriched of C,N and Ni is still stable at the cryogenic temperature.The tearing ridges on the impact fracture surface is densely occupied by the precipitated austenite,elongated along the tearing direction.One of the important cause of the excellent eryogenic properties is that the precipitated austenite absorbs the impurities and thus purifies the matrix of the steel.
文摘The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-fiat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.
文摘Cryogenic treatment has been increasingly applied to enhance the hardness, antiwear ability and fatigue performance of die steel. On the basis of reading a large number of research papers and references across the world, the author makes a detailed analysis and brief summary of the influence of cryogenic treatment on microstructure after quenching process or quenching plus tempering process, on first and second carbides, on content of retained austenite, on surface hardness, on mechanical properties and antiwear ability of die steels. It’s proved that cryogenic treatment on die steel significantly improves its hardness, antiwear capacity and service life. It’s the cryogenic process to make die steel have higher hardness, better antiwear ability, better ductility and longer service life because cryogenic process actually has a good influence on die steel of its microstructure, retained austenite volume and amount and size of the second carbide.
基金supported by the National Key Research and Development Program of China(No.2017YFB0304900).
文摘Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting,and the homogenized forged billet was hot-rolled.The plastic deformation mechanism was investigated through tensile testing of the hot-rolled sample.Different characterization techniques such as scanning electron microscopy,transmission electron microscopy,electron backscattered diffraction,and X-ray diffraction were used to analyze the microstructural evolution of steel under different strain levels.The steel had a single austenite phase,which was stable during deformation.After hot rolling,annealing twins were observed in the microstructure of the steel.The steel showed an excellent combination of mechanical properties,like a tensile strength of 527 MPa,impact energy of 203 J at−196℃,and an elongation of 67%till fracture.At the initial deformation stage,the dislocations were generated within the austenite grains,entangled and accumulated at the grain boundaries and annealing twin boundaries.Annealing twins participated in plastic deformation and hindered the dislocation movement.As the deformation progressed,the dislocation slip was hindered and produced stress concentration,and the stacking faults evolved into mechanical twins,which released the stress concentration and delayed the necking.
文摘A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.
文摘The application of components often depends to a large extent on the properties of the surface layer.A novel process chain for the production of components with a hardened surface layer from metastable austenitic steel was presented.The investigated metastable austenitic AISI 347 steel was cold-drawn in solution annealed condition at cryogenic temperatures for pre-hardening,followed by post-hardening via cryogenic turning.The increase in hardness in both processes was due to strain hardening and deformation-induced phase transformation from y-austenite to^-martensite.Cryogenic turning experiments were carried out with solution annealed AISI 347 steel as well as with solution annealed and subsequently cold-drawn AISI 347 steel.The thermomechanical load of the workpiece surface layer during the turning process as well as the resulting surface morphology was characterized.The forces and temperatures were higher in turning the cold-drawn AISI 347 steel than turning the solution annealed AISI 347 steel.After cryogenic turning of the solution annealed material,deformation-induced phase transformation and a significant increase in hardness were detected in the near-surface layer.In contrast,no additional phase transformation was observed after cryogenic turning of the cold-drawn AISI 347 steel.The maximum hardness in the surface layer was similar,whereas the hardness in the core of the cold-drawn AISI 347 steel was higher compared to that in the solution annealed AISI 347 steel.
基金supported by the Fundamental Research Funds for the Central Universities(No.N120807001)the National High-tech Research and Development Program of China (863 Program)(No.2007 AA03Z504)
文摘It has been widely demonstrated that addition of Ni in low-carbon steels can effectively improve the cryogenic toughness, but the mechanism behind it has yet to be clarified. In the present work, the evolutions of microstructure and mechanical properties after quenching and tempering for Ni-containing cryogenic steels with different Ni contents (3.5-9 wt%) were investigated. The results showed that after quenching and tempering, the Ni-containing cryogenic steels were composed of tempered martensite and reversed austenite. The volume fraction of reversed austenite has increased from 0 up to 6.3% when the Ni content increases from 3.5% to 9%. The Charpy impact tests indicated that the low- temperature toughness was markedly improved with the increase in Ni content, which can be correlated with the increase in reversed austenite amount. The main contribution of reversed austenite to the toughness lies in: (1) the elimination of cementite precipitates improved the plastic deformation capacity of matrix, and (2) the crack propagation is hindered through plastic deformation.
文摘The effect of deep cryogenic treatment on the formation of reversed austenite (RA) in super martensitic stainless steel was investigated. RA was found to form in steels without (A) and with (B) deep cryogenic treatment. The volume fraction of RA initially increased and then decreased with increasing tempering temperature over 550-- 750 ℃ for the two steels, which were quenched at 1050 ℃. In addition, for both with and without deep cryogenic treatment, the RA content reached a maximum value at 650 ℃ although the RA content in steel B was greater than that in steel A over the entire range of tempering temperatures. Furthermore, the hardness (HRC) of steel B was greater than that of steel A at tempering temperatures of 550--750 ℃. From these results, the basic mechanism for the formation of RA in steels A and B was determined to be Ni diffusion. However, there were more Ni enriched points, a lower degree of enrichment, and a shorter diffusion path in steel B. It needed to be noted that the shapes of the RA consisted of blocks and stripes in both steels. These shapes resulted because the RA redissolved and trans- formed to martensite along the martensitic lath boundaries when the tempering temperature was 650--750 ℃, and a portion of RA in the martensitie lath divided the originally wider martensitic laths into a number of thinner ones. In- terestingly, the RA redissolved more rapidly in steel B and consequently resulted in a stronger refining effect.
基金The work was financially supported by the National Natural Science Foundation of China(Grant No.51761022).
文摘The effects of traditional heat treatment(quenching and then tempering)and deep cryogenic treatment on the microstructure and mechanical properties of a low-carbon high-alloy martensitic bearing steel were studied by Rockwell hardness test,X-ray diffractometry,scanning electron microscopy and transmission electron microscopy.The results show that the deep cryogenic treatment promotes the transformation of the retained austenite to martensite during cooling,which leads to the hardness of the sample after deep cryogenic treatment higher than that at the quenched state.Also,the carbon content in the martensite matrix after different treatments was calculated and the results indicated that deep cryogenic treatment can promote the segregation of carbon atoms in martensite to dislocations.The segregated carbon atoms act as and grow into nuclei for the formation of fine carbide particles during subsequent tempering.And this resulted in the fact that the hardness of the tempered experimental steel after deep cryogenic treatment is higher than that without deep cryogenic treatment.
基金The authors are grateful to the funding by National High Technology Research and Development Program of China(863 Program,Grant No.2012AA03A503).
文摘Microstructure and mechanical properties in core of a carburizing 20CrNi2MoV bearing steel subjected to cryogenic treatment were investigated.Conventional treatment sample was quenched and tempered at 180℃ for 2 h.Cryogenic treatment samples were quenched,cryogenically treated at−80 and−196℃ for 4 h,slowly returned to room temperature and thereafter tempered at 180℃ for 2 h,and finally tempered at 180℃ for 2 h.The scanning electron microscope,electron backscattering diffraction,X-ray diffraction and transmission electron microscope were adopted for microstructure characterization.The results show that cryogenic treatment increases the fraction of high-angle grain boundaries and the precipitation of finely dispersed carbides in the matrix,decreases the volume fraction of inter-lath retained austenite,and hence improves the strength and hardness.Compared with the conventional treatment,the hardness,yield strength and ultimate tensile strength of the steel after cryogenic treatment are increased by 11.7%,12.6%and 18.3%,respectively,while the impact energy is decreased by 9.8%.
基金financially supported by Wuhan Iron and Steel(Group)Corp
文摘The effect of Mn content on the microstructure and cryogenic mechanical properties of a 7% Ni steel was investigated within the Mn content range from 0.13% to 0.36%. The microstructure of the steel as determined by optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscattering diffraction and X-ray diffraction was presented, and the low-temperature mechanical properties were given. The size of prior austenite grain did not change a lot as Mn content increased. Film-like reversed austenite, having high stability, was found mainly in the specimens with lower Mn content; however, in the specimen with the highest Mn content, the role of Mn was not obvious in stabilizing reversed austenite. Besides, with increasing Mn content, the amount of reversed austenite at grain boundaries gradually decreased. The variable Mn content had a significant effect on cryogenic toughness~ but not apparent on cryogenic tensile strength or yield strength. An excellent combination of cryogenic tensile and impact properties was obtained when Mn content of steel was 0.13%.