Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological me...Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological mechanisms underlying IPFD remain unclear,with several potential contributing factors,including oxida-tive stress,alterations in the gut microbiota,and hormonal imbalances.IPFD was found to be highly correlated with the occurrence and prognosis of exocrine pan-creatic diseases.Although imaging techniques remain the primary diagnostic approach for IPFD,an expanding array of biomarkers and clinical scoring systems have been identified for screening purposes.Currently,effective treatments for IPFD are not available;however,existing medications,such as glucagon-like peptide-1 receptor agonists,and new therapeutic approaches explored in animal models have shown considerable potential for managing this disease.This paper reviews the pathogenesis of IPFD,its association with exocrine pancreatic disea-ses,and recent advancements in its diagnosis and treatment,emphasizing the significant clinical relevance of IPFD.展开更多
Inflammatory bowel disease,particularly Crohn's disease(CD),has been linked to modifications in mesenteric adipose tissue(MAT)and the phenomenon known as"creeping fat"(CrF).The presence of CrF is believe...Inflammatory bowel disease,particularly Crohn's disease(CD),has been linked to modifications in mesenteric adipose tissue(MAT)and the phenomenon known as"creeping fat"(CrF).The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD.Notably,the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence,indicating the significant role of MAT in the pathogenesis of CD.While numerous studies have indicated that dysbiosis of the gut microbiota is a critical factor in the development of CD,the functional implications of translocated microbiota within the MAT of CD patients remain ambiguous.This manuscript commentary discusses a recent basic research conducted by Wu et al.In their study,intestinal bacteria from individuals were transplanted into CD model mice,revealing that fecal microbiota trans-plantation(FMT)from healthy donors alleviated CD symptoms,whereas FMT from CD patients exacerbated these symptoms.Importantly,FMT was found to affect intestinal permeability,barrier function,and the levels of proinflammatory factors and adipokines.Collectively,these findings suggest that targeting MAT and CrF may hold therapeutic potential for patients with CD.However,the study did not evaluate the composition of the intestinal microbiota of the donors or the subsequent alterations in the gut microbiota.Overall,the gut microbiota plays a crucial role in the histopathology of CD,and thus,targeting MAT and CrF may represent a promising avenue for treatment in this patient population.展开更多
BACKGROUND Autologous fat injection in facial reconstruction is a common cosmetic surgery.Although cerebral fat embolism(CFE)as a complication is rare,it carries serious health risks.CASE SUMMARY We present a case of ...BACKGROUND Autologous fat injection in facial reconstruction is a common cosmetic surgery.Although cerebral fat embolism(CFE)as a complication is rare,it carries serious health risks.CASE SUMMARY We present a case of a 29-year-old female patient who developed acute CFE following facial fat filling surgery.After the surgery,the patient experienced symptoms including headache,nausea,vomiting,and difficulty breathing,which was followed by neurological symptoms such as slurred speech and left-sided weakness.Comprehensive physical examination and auxiliary investigations,including blood tests,head and neck computed tomography angiography,and cranial magnetic resonance diffusion-weighted imaging,were performed upon admission.The clinical diagnosis was acute cerebral embolism following facial fat filling surgery.Treatment included measures to improve cerebral circulation,dehydration for intracranial pressure reduction,nutritional support,and rehabilitation therapy for left limb function.The patient showed a significant improvement in symptoms after 2 weeks of treatment.She recovered left limb muscle strength to grade 5,had clear speech,and experienced complete relief of headache.CONCLUSION Our case highlights the potential occurrence of severe complications in patients undergoing fat injection in facial reconstruction.To prevent these complications,plastic surgeons should enhance their professional knowledge and skills.展开更多
In this article,we explored the role of adipose tissue,especially mesenteric adipose tissue and creeping fat,and its association with the gut microbiota in the pathophysiology and progression of Crohn’s disease(CD).C...In this article,we explored the role of adipose tissue,especially mesenteric adipose tissue and creeping fat,and its association with the gut microbiota in the pathophysiology and progression of Crohn’s disease(CD).CD is a form of inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract,influenced by genetic predisposition,gut microbiota dysbiosis,and environmental factors.Gut microbiota plays a crucial role in modulating immune response and intestinal inflammation and is associated with the onset and progression of CD.Further,visceral adipose tissue,particularly creeping fat,a mesenteric adipose tissue characterized by hypertrophy and fibrosis,has been implicated in CD pathogenesis,inflammation,and fibrosis.The bacteria from the gut microbiota may translocate into mesenteric adipose tissue,contributing to the formation of creeping fat and influencing CD progression.Although creeping fat may be a protective barrier against bacterial invasion,its expansion can damage adjacent tissues,leading to complications.Modulating gut microbiota through interventions such as fecal microbiota transplantation,probiotics,and prebiotics has shown potential in managing CD.However,more research is needed to clarify the mechanisms linking gut dysbiosis,creeping fat,and CD progression and develop targeted therapies for microbiota modulation and fat-related complications in patients with CD.展开更多
Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor...Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation.A single nucleotide polymorphism(SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor,zinc finger BED-type containing 6(ZBED6),leading to up-regulation of IGF2 and causing major effects on muscle growth,heart size,and backfat thickness.This favorable mutation is common in Western commercial pig populations,but absent in most Chinese indigenous pig breeds.To improve meat production of Chinese indigenous pigs,we used cytosine base editor 3(CBE3)to introduce IGF2 intron3-C3071T mutation into porcine embryonic fibroblasts(PEFs) isolated from a male Liang Guang Small Spotted pig(LGSS),and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer(SCNT) to generate the founder line of IGF2^(T/T) pigs.Results We found the heterozygous progeny IGF2^(C/T) pigs exhibited enhanced expression of IGF2,increased lean meat by 18%-36%,enlarged loin muscle area by 3%-17%,improved intramuscular fat(IMF) content by 18%-39%,marbling score by 0.75-1,meat color score by 0.53-1.25,and reduced backfat thickness by 5%-16%.The enhanced accumulation of intramuscular fat in IGF2^(C/T) pigs was identified to be regulated by the PI3K-AKT/AMPK pathway,which activated SREBP1 to promote adipogenesis.Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality,and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3KAKT/AMPK signaling pathways.Our study provides a further understanding of the biological functions of IGF2and an example for improving porcine economic traits through precise base editing.展开更多
Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investi...Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.展开更多
BACKGROUND As one of the most common aesthetic surgical procedures carried out today,blepharoplasty should be in the repertoire of every plastic surgeon.The term blepharoplasty encompasses a wide range of techniques a...BACKGROUND As one of the most common aesthetic surgical procedures carried out today,blepharoplasty should be in the repertoire of every plastic surgeon.The term blepharoplasty encompasses a wide range of techniques and options that must be tailored to the specific defect and patient one has to treat.A sound knowledge of the upper and lower eyelids’anatomy is essential for proper surgical execution.Trends have shifted towards more conservative methods(especially of the fat compartment)and sometimes in combination with augmentation techniques,helping to reach a rejuvenated appearance.AIM To present an overview of the surgical techniques considered for upper lid blepharoplasty and fat pad management,in addition to information on how a surgeon may approach the best treatment for his patient based on current publications in literature.METHODS We searched the literature published between 2013,to 2023 using Medline and Reference Citation Analysis.The database was searched using the keywords“upper blepharoplasty”AND“fat”.Papers without full text/abstracts and reviews were excluded.The search strategy followed the PRISMA.The American Society of Plastic Surgeons guidelines for Therapeutic Studies checklist was used to assess all articles.Two authors individually reviewed each article and rated them for importance and relevance to the topic.A consensus was sought and the most relevant studies.RESULTS After the application of the selection criteria used in our review,13 publications were found to address upper lid blepharoplasty specifically.Three of these studies were reviews and three were retrospective studies.Five publications were comparative studies and a further two were clinical trials.CONCLUSION The tendency of modern surgery is to be conservative,by removing adipose tissue only if strictly necessary and restoring the volume of the upper eyelid in a concept of beauty that espouses a"full"sight.There is no gold standard technique to achieve younger and enhanced eyelids.Long-term prospective comparative studies are fundamental in understanding which path is the best to follow.展开更多
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
Background Excessive backfat deposition lowering carcass grade is a major concern in the pig industry,especially in most breeds of obese type pigs.The mechanisms involved in adipogenesis and fat accumulation in pigs r...Background Excessive backfat deposition lowering carcass grade is a major concern in the pig industry,especially in most breeds of obese type pigs.The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear.Lysine 2-hydroxyisobutyrylation(Khib),is a novel protein post-translational modification(PTM),which play an important role in transcription,energy metabolism and metastasis of cancer cells,but its role in adipogenesis and fat accumulation has not been shown.Results In this study,we first analyzed the modification levels of acetylation(Kac),Khib,crotonylation(Kcr)and succinylation(Ksu)of fibro-adipogenic progenitors(FAPs),myogenic precursors(Myo)and mesenchymal stem cells(MSCs)with varied differentiation potential,and found that only Khib modification in FAPs was significantly higher than that in MSCs.Consistently,in parallel with its regulatory enzymes lysine acetyltransferase 5(KAT5)and histone deacetylase 2(HDAC2)protein levels,the Khib levels increased quadratically(P<0.01)during adipogenic differentiation of FAPs.KAT5 knockdown in FAPs inhibited adipogenic differentiation,while HDAC2 knockdown enhanced adipogenic differentiation.We also demonstrated that Khib modification favored to adipogenic differentiation and fat accumulation by comparing Khib levels in FAPs and backfat tissues both derived from obese-type pigs(Laiwu pigs)and lean-type pigs(Duroc pigs),respectively.Accordingly,the expression patterns of KAT5 and HDAC2 matched well to the degree of backfat accumulation in obese-and lean-type pigs.Conclusions From the perspective of protein translational modification,we are the first to reveal the role of Khib in adipogenesis and fat deposition in pigs,and provided new clues for the improvement of fat accumulation and distribution as expected via genetic selection and nutritional strategy in obese-type pigs.展开更多
d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycer...d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycerol. MCTs have been extensively investigated for their ability to reduce body fat accumulation. We previously investigated the anti-obesity effects of a combination of dietary d-allulose and MCT (5% - 13%) in rats;however, we could not confirm the anti-obesity effects of MCT or observed synergetic effects between d-allulose and MCT on body fat loss. We speculated that our previous studies were influenced by the excessive amount of MCT in the diets. Therefore, in this study, we aimed to investigate the anti-obesity effects of the simultaneous intake of d-allulose and MCT in rats fed an obesity-inducing high-fat diet with a low amount of MCTs (2%). Thirty-two male Wistar rats (3-week-old) were randomly divided into four groups: control, d-allulose, MCT, and d-allulose + MCT groups. Rats in each group were fed ad libitum on a control (no d-Allulose or MCT), 5% d-allulose, 2% MCT, or 5% d-allulose + 2% MCT diets for 16 weeks. Abdominal adipose tissue weights were significantly lower in the d-allulose diet group than in the control group, whereas no differences were observed between results of the MCT-supplemented groups. The total body fat mass was significantly lower in the d-allulose and MCT diet groups than in the control group, but no differences were observed between the MCT-supplemented groups. These results suggested that anti-obesity effects of dietary d-allulose were observed, and the effects of dietary MCTs were weaker than those of d-allulose. Moreover, we confirmed the interaction between dietary d-allulose and MCT on indicators of obesity. Interestingly, their effects were not synergistic, as MCT supplementation offset the anti-obesity effects of dietary d-allulose. However, the specific mechanisms underlying those effects remain unknown, warranting further investigation.展开更多
This study investigates the use of waste fat biodiesel(WFB)from the leather industry as a substitute for diesel fuel.Specifically,it examines the diesel engine performance of WFB,a blend of WFB and diesel(B50),and dif...This study investigates the use of waste fat biodiesel(WFB)from the leather industry as a substitute for diesel fuel.Specifically,it examines the diesel engine performance of WFB,a blend of WFB and diesel(B50),and different blends of WFB and silicon dioxide(SiO_(2))nanoparticles(B50SiO_(2)40,B50SiO_(2)80,and B50SiO_(2)120μg/g).The results indicate that the B50SiO_(2)120 blend increases brake thermal efficiency by 10.03%compared to pure biodiesel but falls 1.93%short of neat diesel.Furthermore,the B50SiO_(2)120 mixture reduces smoke,hydrocarbon,and carbon monoxide emissions by 31.87%,34.14%,and 43.97%respectively,compared to diesel.However,the B50SiO_(2)120 blend shows a 4.91%increase in nitrogen oxide emissions compared to diesel.展开更多
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile...Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.展开更多
Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy met...Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.展开更多
Background Clostridium butyricum(CB)is a probiotic that can regulate intestinal microbial composition and improve meat quality.Rumen protected fat(RPF)has been shown to increase the dietary energy density and provide ...Background Clostridium butyricum(CB)is a probiotic that can regulate intestinal microbial composition and improve meat quality.Rumen protected fat(RPF)has been shown to increase the dietary energy density and provide essential fatty acids.However,it is still unknown whether dietary supplementation with CB and RPF exerts beneficial effects on growth performance and nutritional value of goat meat.This study aimed to investigate the effects of dietary CB and RPF supplementation on growth performance,meat quality,oxidative stability,and meat nutritional value of finishing goats.Thirty-two goats(initial body weight,20.5±0.82 kg)were used in a completely randomized block design with a 2 RPF supplementation(0 vs.30 g/d)×2 CB supplementation(0 vs.1.0 g/d)factorial treatment arrangement.The experiment included a 14-d adaptation and 70-d data and sample collection period.The goats were fed a diet consisted of 400 g/kg peanut seedling and 600 g/kg corn-based concentrate(dry matter basis).Result Interaction between CB and RPF was rarely observed on the variables measured,except that shear force was reduced(P<0.05)by adding CB or RPF alone or their combination;the increased intramuscular fat(IMF)content with adding RPF was more pronounced(P<0.05)with CB than without CB addition.The pH24h(P=0.009),a*values(P=0.007),total antioxidant capacity(P=0.050),glutathione peroxidase activities(P=0.006),concentrations of 18:3(P<0.001),20:5(P=0.003)and total polyunsaturated fatty acids(P=0.048)were increased,whereas the L*values(P<0.001),shear force(P=0.050)and malondialdehyde content(P=0.044)were decreased by adding CB.Furthermore,CB supplementation increased essential amino acid(P=0.027),flavor amino acid(P=0.010)and total amino acid contents(P=0.024)as well as upregulated the expression of lipoprotein lipase(P=0.034)and peroxisome proliferator-activated receptorγ(PPARγ)(P=0.012),and downregulated the expression of stearoyl-CoA desaturase(SCD)(P=0.034).The RPF supplementation increased dry matter intake(P=0.005),averaged daily gain(trend,P=0.058),hot carcass weight(P=0.046),backfat thickness(P=0.006),concentrations of 16:0(P<0.001)and c9-18:1(P=0.002),and decreased the shear force(P<0.001),isoleucine(P=0.049)and lysine content(P=0.003)of meat.In addition,the expressions of acetyl-CoA carboxylase(P=0.003),fatty acid synthase(P=0.038),SCD(P<0.001)and PPARγ(P=0.022)were upregulated due to RPF supplementation,resulting in higher(P<0.001)content of IMF.Conclusions CB and RPF could be fed to goats for improving the growth performance,carcass traits and meat quality,and promote fat deposition by upregulating the expression of lipogenic genes of Longissimus thoracis muscle.展开更多
Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal ...Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.展开更多
基金Supported by National Natural Science Foundation of China,No.82170651and the Research Support Fund of Hubei Microcirculation Society,No.HBWXH2024(1)-1.
文摘Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological mechanisms underlying IPFD remain unclear,with several potential contributing factors,including oxida-tive stress,alterations in the gut microbiota,and hormonal imbalances.IPFD was found to be highly correlated with the occurrence and prognosis of exocrine pan-creatic diseases.Although imaging techniques remain the primary diagnostic approach for IPFD,an expanding array of biomarkers and clinical scoring systems have been identified for screening purposes.Currently,effective treatments for IPFD are not available;however,existing medications,such as glucagon-like peptide-1 receptor agonists,and new therapeutic approaches explored in animal models have shown considerable potential for managing this disease.This paper reviews the pathogenesis of IPFD,its association with exocrine pancreatic disea-ses,and recent advancements in its diagnosis and treatment,emphasizing the significant clinical relevance of IPFD.
文摘Inflammatory bowel disease,particularly Crohn's disease(CD),has been linked to modifications in mesenteric adipose tissue(MAT)and the phenomenon known as"creeping fat"(CrF).The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD.Notably,the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence,indicating the significant role of MAT in the pathogenesis of CD.While numerous studies have indicated that dysbiosis of the gut microbiota is a critical factor in the development of CD,the functional implications of translocated microbiota within the MAT of CD patients remain ambiguous.This manuscript commentary discusses a recent basic research conducted by Wu et al.In their study,intestinal bacteria from individuals were transplanted into CD model mice,revealing that fecal microbiota trans-plantation(FMT)from healthy donors alleviated CD symptoms,whereas FMT from CD patients exacerbated these symptoms.Importantly,FMT was found to affect intestinal permeability,barrier function,and the levels of proinflammatory factors and adipokines.Collectively,these findings suggest that targeting MAT and CrF may hold therapeutic potential for patients with CD.However,the study did not evaluate the composition of the intestinal microbiota of the donors or the subsequent alterations in the gut microbiota.Overall,the gut microbiota plays a crucial role in the histopathology of CD,and thus,targeting MAT and CrF may represent a promising avenue for treatment in this patient population.
基金Supported by The National Natural Science Foundation of China,No.82171334The Chongqing Science and Health Joint Medical Research Project,No.2024MSXM155.
文摘BACKGROUND Autologous fat injection in facial reconstruction is a common cosmetic surgery.Although cerebral fat embolism(CFE)as a complication is rare,it carries serious health risks.CASE SUMMARY We present a case of a 29-year-old female patient who developed acute CFE following facial fat filling surgery.After the surgery,the patient experienced symptoms including headache,nausea,vomiting,and difficulty breathing,which was followed by neurological symptoms such as slurred speech and left-sided weakness.Comprehensive physical examination and auxiliary investigations,including blood tests,head and neck computed tomography angiography,and cranial magnetic resonance diffusion-weighted imaging,were performed upon admission.The clinical diagnosis was acute cerebral embolism following facial fat filling surgery.Treatment included measures to improve cerebral circulation,dehydration for intracranial pressure reduction,nutritional support,and rehabilitation therapy for left limb function.The patient showed a significant improvement in symptoms after 2 weeks of treatment.She recovered left limb muscle strength to grade 5,had clear speech,and experienced complete relief of headache.CONCLUSION Our case highlights the potential occurrence of severe complications in patients undergoing fat injection in facial reconstruction.To prevent these complications,plastic surgeons should enhance their professional knowledge and skills.
基金Supported by the Postdoctoral Scholarship Grant,No.5552/2024 PROPG/PROPE N°06/2024.
文摘In this article,we explored the role of adipose tissue,especially mesenteric adipose tissue and creeping fat,and its association with the gut microbiota in the pathophysiology and progression of Crohn’s disease(CD).CD is a form of inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract,influenced by genetic predisposition,gut microbiota dysbiosis,and environmental factors.Gut microbiota plays a crucial role in modulating immune response and intestinal inflammation and is associated with the onset and progression of CD.Further,visceral adipose tissue,particularly creeping fat,a mesenteric adipose tissue characterized by hypertrophy and fibrosis,has been implicated in CD pathogenesis,inflammation,and fibrosis.The bacteria from the gut microbiota may translocate into mesenteric adipose tissue,contributing to the formation of creeping fat and influencing CD progression.Although creeping fat may be a protective barrier against bacterial invasion,its expansion can damage adjacent tissues,leading to complications.Modulating gut microbiota through interventions such as fecal microbiota transplantation,probiotics,and prebiotics has shown potential in managing CD.However,more research is needed to clarify the mechanisms linking gut dysbiosis,creeping fat,and CD progression and develop targeted therapies for microbiota modulation and fat-related complications in patients with CD.
基金supported by the National Natural Science Foundation of China (3207269732030102)+2 种基金CARS-PIG-35R&D Programmes of Guangdong Province (2018B020203003)Laboratory of Lingnan Modern Agriculture Project (NZ2021006)。
文摘Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation.A single nucleotide polymorphism(SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor,zinc finger BED-type containing 6(ZBED6),leading to up-regulation of IGF2 and causing major effects on muscle growth,heart size,and backfat thickness.This favorable mutation is common in Western commercial pig populations,but absent in most Chinese indigenous pig breeds.To improve meat production of Chinese indigenous pigs,we used cytosine base editor 3(CBE3)to introduce IGF2 intron3-C3071T mutation into porcine embryonic fibroblasts(PEFs) isolated from a male Liang Guang Small Spotted pig(LGSS),and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer(SCNT) to generate the founder line of IGF2^(T/T) pigs.Results We found the heterozygous progeny IGF2^(C/T) pigs exhibited enhanced expression of IGF2,increased lean meat by 18%-36%,enlarged loin muscle area by 3%-17%,improved intramuscular fat(IMF) content by 18%-39%,marbling score by 0.75-1,meat color score by 0.53-1.25,and reduced backfat thickness by 5%-16%.The enhanced accumulation of intramuscular fat in IGF2^(C/T) pigs was identified to be regulated by the PI3K-AKT/AMPK pathway,which activated SREBP1 to promote adipogenesis.Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality,and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3KAKT/AMPK signaling pathways.Our study provides a further understanding of the biological functions of IGF2and an example for improving porcine economic traits through precise base editing.
文摘Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.
文摘BACKGROUND As one of the most common aesthetic surgical procedures carried out today,blepharoplasty should be in the repertoire of every plastic surgeon.The term blepharoplasty encompasses a wide range of techniques and options that must be tailored to the specific defect and patient one has to treat.A sound knowledge of the upper and lower eyelids’anatomy is essential for proper surgical execution.Trends have shifted towards more conservative methods(especially of the fat compartment)and sometimes in combination with augmentation techniques,helping to reach a rejuvenated appearance.AIM To present an overview of the surgical techniques considered for upper lid blepharoplasty and fat pad management,in addition to information on how a surgeon may approach the best treatment for his patient based on current publications in literature.METHODS We searched the literature published between 2013,to 2023 using Medline and Reference Citation Analysis.The database was searched using the keywords“upper blepharoplasty”AND“fat”.Papers without full text/abstracts and reviews were excluded.The search strategy followed the PRISMA.The American Society of Plastic Surgeons guidelines for Therapeutic Studies checklist was used to assess all articles.Two authors individually reviewed each article and rated them for importance and relevance to the topic.A consensus was sought and the most relevant studies.RESULTS After the application of the selection criteria used in our review,13 publications were found to address upper lid blepharoplasty specifically.Three of these studies were reviews and three were retrospective studies.Five publications were comparative studies and a further two were clinical trials.CONCLUSION The tendency of modern surgery is to be conservative,by removing adipose tissue only if strictly necessary and restoring the volume of the upper eyelid in a concept of beauty that espouses a"full"sight.There is no gold standard technique to achieve younger and enhanced eyelids.Long-term prospective comparative studies are fundamental in understanding which path is the best to follow.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFD1301300)。
文摘Background Excessive backfat deposition lowering carcass grade is a major concern in the pig industry,especially in most breeds of obese type pigs.The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear.Lysine 2-hydroxyisobutyrylation(Khib),is a novel protein post-translational modification(PTM),which play an important role in transcription,energy metabolism and metastasis of cancer cells,but its role in adipogenesis and fat accumulation has not been shown.Results In this study,we first analyzed the modification levels of acetylation(Kac),Khib,crotonylation(Kcr)and succinylation(Ksu)of fibro-adipogenic progenitors(FAPs),myogenic precursors(Myo)and mesenchymal stem cells(MSCs)with varied differentiation potential,and found that only Khib modification in FAPs was significantly higher than that in MSCs.Consistently,in parallel with its regulatory enzymes lysine acetyltransferase 5(KAT5)and histone deacetylase 2(HDAC2)protein levels,the Khib levels increased quadratically(P<0.01)during adipogenic differentiation of FAPs.KAT5 knockdown in FAPs inhibited adipogenic differentiation,while HDAC2 knockdown enhanced adipogenic differentiation.We also demonstrated that Khib modification favored to adipogenic differentiation and fat accumulation by comparing Khib levels in FAPs and backfat tissues both derived from obese-type pigs(Laiwu pigs)and lean-type pigs(Duroc pigs),respectively.Accordingly,the expression patterns of KAT5 and HDAC2 matched well to the degree of backfat accumulation in obese-and lean-type pigs.Conclusions From the perspective of protein translational modification,we are the first to reveal the role of Khib in adipogenesis and fat deposition in pigs,and provided new clues for the improvement of fat accumulation and distribution as expected via genetic selection and nutritional strategy in obese-type pigs.
文摘d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycerol. MCTs have been extensively investigated for their ability to reduce body fat accumulation. We previously investigated the anti-obesity effects of a combination of dietary d-allulose and MCT (5% - 13%) in rats;however, we could not confirm the anti-obesity effects of MCT or observed synergetic effects between d-allulose and MCT on body fat loss. We speculated that our previous studies were influenced by the excessive amount of MCT in the diets. Therefore, in this study, we aimed to investigate the anti-obesity effects of the simultaneous intake of d-allulose and MCT in rats fed an obesity-inducing high-fat diet with a low amount of MCTs (2%). Thirty-two male Wistar rats (3-week-old) were randomly divided into four groups: control, d-allulose, MCT, and d-allulose + MCT groups. Rats in each group were fed ad libitum on a control (no d-Allulose or MCT), 5% d-allulose, 2% MCT, or 5% d-allulose + 2% MCT diets for 16 weeks. Abdominal adipose tissue weights were significantly lower in the d-allulose diet group than in the control group, whereas no differences were observed between results of the MCT-supplemented groups. The total body fat mass was significantly lower in the d-allulose and MCT diet groups than in the control group, but no differences were observed between the MCT-supplemented groups. These results suggested that anti-obesity effects of dietary d-allulose were observed, and the effects of dietary MCTs were weaker than those of d-allulose. Moreover, we confirmed the interaction between dietary d-allulose and MCT on indicators of obesity. Interestingly, their effects were not synergistic, as MCT supplementation offset the anti-obesity effects of dietary d-allulose. However, the specific mechanisms underlying those effects remain unknown, warranting further investigation.
文摘This study investigates the use of waste fat biodiesel(WFB)from the leather industry as a substitute for diesel fuel.Specifically,it examines the diesel engine performance of WFB,a blend of WFB and diesel(B50),and different blends of WFB and silicon dioxide(SiO_(2))nanoparticles(B50SiO_(2)40,B50SiO_(2)80,and B50SiO_(2)120μg/g).The results indicate that the B50SiO_(2)120 blend increases brake thermal efficiency by 10.03%compared to pure biodiesel but falls 1.93%short of neat diesel.Furthermore,the B50SiO_(2)120 mixture reduces smoke,hydrocarbon,and carbon monoxide emissions by 31.87%,34.14%,and 43.97%respectively,compared to diesel.However,the B50SiO_(2)120 blend shows a 4.91%increase in nitrogen oxide emissions compared to diesel.
基金financially supported by the National Natural Science Foundation of China(32102559)the Jiangsu Shuang Chuang Tuan Dui Program,China(JSSCTD202147)the Jiangsu Shuang Chuang Ren Cai Program,China(JSSCRC2021541)。
文摘Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.
基金funded by the National Key Research and Development Program of China (2021YFD1300403)。
文摘Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.
基金supported by the National Key Research and Development Program of China(2022YFD1301105)the earmarked fund for CARS(CARS-36)+2 种基金the Natural Science Foundation of Heilongjiang Province(YQ2021C018)the Postdoctoral Foundation of Heilongjiang Province(LBH-Z21100)the Open Project Program of International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement(IJRLD-KF202204).
文摘Background Clostridium butyricum(CB)is a probiotic that can regulate intestinal microbial composition and improve meat quality.Rumen protected fat(RPF)has been shown to increase the dietary energy density and provide essential fatty acids.However,it is still unknown whether dietary supplementation with CB and RPF exerts beneficial effects on growth performance and nutritional value of goat meat.This study aimed to investigate the effects of dietary CB and RPF supplementation on growth performance,meat quality,oxidative stability,and meat nutritional value of finishing goats.Thirty-two goats(initial body weight,20.5±0.82 kg)were used in a completely randomized block design with a 2 RPF supplementation(0 vs.30 g/d)×2 CB supplementation(0 vs.1.0 g/d)factorial treatment arrangement.The experiment included a 14-d adaptation and 70-d data and sample collection period.The goats were fed a diet consisted of 400 g/kg peanut seedling and 600 g/kg corn-based concentrate(dry matter basis).Result Interaction between CB and RPF was rarely observed on the variables measured,except that shear force was reduced(P<0.05)by adding CB or RPF alone or their combination;the increased intramuscular fat(IMF)content with adding RPF was more pronounced(P<0.05)with CB than without CB addition.The pH24h(P=0.009),a*values(P=0.007),total antioxidant capacity(P=0.050),glutathione peroxidase activities(P=0.006),concentrations of 18:3(P<0.001),20:5(P=0.003)and total polyunsaturated fatty acids(P=0.048)were increased,whereas the L*values(P<0.001),shear force(P=0.050)and malondialdehyde content(P=0.044)were decreased by adding CB.Furthermore,CB supplementation increased essential amino acid(P=0.027),flavor amino acid(P=0.010)and total amino acid contents(P=0.024)as well as upregulated the expression of lipoprotein lipase(P=0.034)and peroxisome proliferator-activated receptorγ(PPARγ)(P=0.012),and downregulated the expression of stearoyl-CoA desaturase(SCD)(P=0.034).The RPF supplementation increased dry matter intake(P=0.005),averaged daily gain(trend,P=0.058),hot carcass weight(P=0.046),backfat thickness(P=0.006),concentrations of 16:0(P<0.001)and c9-18:1(P=0.002),and decreased the shear force(P<0.001),isoleucine(P=0.049)and lysine content(P=0.003)of meat.In addition,the expressions of acetyl-CoA carboxylase(P=0.003),fatty acid synthase(P=0.038),SCD(P<0.001)and PPARγ(P=0.022)were upregulated due to RPF supplementation,resulting in higher(P<0.001)content of IMF.Conclusions CB and RPF could be fed to goats for improving the growth performance,carcass traits and meat quality,and promote fat deposition by upregulating the expression of lipogenic genes of Longissimus thoracis muscle.
基金funded by the grants from the Beijing Natural Science Foundation,China(6202028)the National Natural Science Foundation of China(32172723)+2 种基金the State Key Laboratory of Animal Nutrition,China(2004DA125184G2109)the Agricultural Science and Technology Innovation Program,China(ASTIP-IAS04)the China Agriculture Research System of MOF and MARA(CARS-41).
文摘Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.