The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orient...Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orientation of labbased XRD measurements using Bragg–Brentano geometry.Here,we find that employing spherical harmonics in Rietveld refinement to eliminate the preferred orientation can significantly decrease the measurement error of the Li/Ni mixing ratio.The Li/Ni mixing ratio obtained from Rietveld refinement with spherical harmonics shows a strong correlation with discharge capacity,which means the electrochemical capacity of lithium nickel oxide and high-nickel ternary cathode can be estimated by the Li/Ni mixing degree.Our findings provide a simple and accurate method to estimate the Li/Ni mixing degree,which is valuable to the structural analysis and screening of the synthesis conditions of lithium nickel oxide and high-nickel ternary cathode materials.展开更多
A uniform Al-doped LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode material was prepared using a coprecipitation method to take advantage of the positive effect of Al on regenerated NCM(Ni,Co,Mn)cathode materials and ameliora...A uniform Al-doped LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode material was prepared using a coprecipitation method to take advantage of the positive effect of Al on regenerated NCM(Ni,Co,Mn)cathode materials and ameliorate cumbersome and high-cost impurity removal processes during lithium-ion battery recycling.When the Al^(3+) content in the leachate was 1 at.%with respect to the total amount of transition metals(Ni,Co,and Mn),the produced Al-doped NCM cathode material increased concentrations of lattice oxygen and Ni^(2+).The initial specific capacity at 0.1C was 167.4 mA·h/g,with a capacity retention of 79.1%after 400 cycles at 1C.Further,this Al-doped sample showed improved rate performance and a smaller electrochemical impedance.These findings provide a reference for developing industrial processes to resynthesize cathode materials with improved electrochemical performance by incorporating Al^(3+) impurities produced during lithium-ion battery recycling.展开更多
Li_(3)PO_(4)@Li_(0.99)K_(0.01)Ni_(0.83)Co_(0.11)Mn_(O.06)O_(2)(NCM-KP) cathode powders are synthesized via K^(+)doping in calcination processes and H_3PO_4 coating in sol-gel processes.K^(+) precisely enters into the ...Li_(3)PO_(4)@Li_(0.99)K_(0.01)Ni_(0.83)Co_(0.11)Mn_(O.06)O_(2)(NCM-KP) cathode powders are synthesized via K^(+)doping in calcination processes and H_3PO_4 coating in sol-gel processes.K^(+) precisely enters into the lattice to widen the(003) plane to 0.4746 nm with a lower cationic disordered degree of 1.87%.Moreover,the surface residual lithium salts are treated by H_3PO_4 to generate a uniform Li_(3)PO_(4) coating layer of approximately 11.41 nm,which completely covers on the surface of secondary spherical particles to improve the interfacial stability.At 25℃,the NCM-KP electrode delivers a discharge specific capacity of 148.9 mAh·g^(-1) with a remarkable capacity retention ratio of 84.1% after 200 cycles at 1.0C and retains a high reversible specific capacity of 154.4 mAh·g^(-1) at 5.0C.Even at 1.0C and 60℃,it can maintain a reversible discharge specific capacity of 114.6 mAh·g^(-1) with 0.21% of capacity decay per cycle after 200 cycles,which is significantly lower than 0.40% for the pristine NCM powders.Importantly,the charge transfer resistance of 238.89 Ω for the NCM-KP electrode is significantly lower than 947.41 Ω for the pristine NCM one by restricting the interfacial side reactions.Therefore,combining K+doping and Li_(3)PO_(4) coating is an effective strategy to enable the significant improvement of the electrochemical property of high-nickel cathode materials,which may be mainly attributed to the widened diffusion pathway and the formed Li_(3)PO_(4) protective layer,thus promoting Li~+diffusion rate and preventing the erosion of HF.展开更多
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
基金Project supported by the Natural Science Foundation of Beijing(Grant No.Z200013)the Beijing Municipal Science&Technology(Grant No.Z191100004719001)the National Natural Science Foundation of China(Grant Nos.52325207 and 22005333)。
文摘Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orientation of labbased XRD measurements using Bragg–Brentano geometry.Here,we find that employing spherical harmonics in Rietveld refinement to eliminate the preferred orientation can significantly decrease the measurement error of the Li/Ni mixing ratio.The Li/Ni mixing ratio obtained from Rietveld refinement with spherical harmonics shows a strong correlation with discharge capacity,which means the electrochemical capacity of lithium nickel oxide and high-nickel ternary cathode can be estimated by the Li/Ni mixing degree.Our findings provide a simple and accurate method to estimate the Li/Ni mixing degree,which is valuable to the structural analysis and screening of the synthesis conditions of lithium nickel oxide and high-nickel ternary cathode materials.
基金supported by Anhui Province Research and Development Innovation Project for Automotive Power Battery Efficient Recycling System, China
文摘A uniform Al-doped LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode material was prepared using a coprecipitation method to take advantage of the positive effect of Al on regenerated NCM(Ni,Co,Mn)cathode materials and ameliorate cumbersome and high-cost impurity removal processes during lithium-ion battery recycling.When the Al^(3+) content in the leachate was 1 at.%with respect to the total amount of transition metals(Ni,Co,and Mn),the produced Al-doped NCM cathode material increased concentrations of lattice oxygen and Ni^(2+).The initial specific capacity at 0.1C was 167.4 mA·h/g,with a capacity retention of 79.1%after 400 cycles at 1C.Further,this Al-doped sample showed improved rate performance and a smaller electrochemical impedance.These findings provide a reference for developing industrial processes to resynthesize cathode materials with improved electrochemical performance by incorporating Al^(3+) impurities produced during lithium-ion battery recycling.
基金financially supported by the National Natural Science Foundation of China (Nos.52274292 and 51874046)the Outstanding Youth Foundation of Hubei Province (No.2020CFA090)。
文摘Li_(3)PO_(4)@Li_(0.99)K_(0.01)Ni_(0.83)Co_(0.11)Mn_(O.06)O_(2)(NCM-KP) cathode powders are synthesized via K^(+)doping in calcination processes and H_3PO_4 coating in sol-gel processes.K^(+) precisely enters into the lattice to widen the(003) plane to 0.4746 nm with a lower cationic disordered degree of 1.87%.Moreover,the surface residual lithium salts are treated by H_3PO_4 to generate a uniform Li_(3)PO_(4) coating layer of approximately 11.41 nm,which completely covers on the surface of secondary spherical particles to improve the interfacial stability.At 25℃,the NCM-KP electrode delivers a discharge specific capacity of 148.9 mAh·g^(-1) with a remarkable capacity retention ratio of 84.1% after 200 cycles at 1.0C and retains a high reversible specific capacity of 154.4 mAh·g^(-1) at 5.0C.Even at 1.0C and 60℃,it can maintain a reversible discharge specific capacity of 114.6 mAh·g^(-1) with 0.21% of capacity decay per cycle after 200 cycles,which is significantly lower than 0.40% for the pristine NCM powders.Importantly,the charge transfer resistance of 238.89 Ω for the NCM-KP electrode is significantly lower than 947.41 Ω for the pristine NCM one by restricting the interfacial side reactions.Therefore,combining K+doping and Li_(3)PO_(4) coating is an effective strategy to enable the significant improvement of the electrochemical property of high-nickel cathode materials,which may be mainly attributed to the widened diffusion pathway and the formed Li_(3)PO_(4) protective layer,thus promoting Li~+diffusion rate and preventing the erosion of HF.