Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the...In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finite-difference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace methods. Numerical results are given to verify the behavior of high-order compact approximations in combination preconditioned methods for stability, convergence. Also, the accuracy and efficiency of the proposed scheme are considered.展开更多
An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in ...An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in both time and space directions. The space variable is discretized by a high-order compact (HOC) difference scheme with correction terms added at the irregular points. The time derivative is integrated by a Crank-Nicolson and alternative direction implicit (ADI) scheme. In this case, the time accuracy is just second-order. The Richardson extrapolation method is used to improve the time accuracy to fourth-order. The numerical results confirm the convergence order and the efficiency of the method.展开更多
This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of init...This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.展开更多
为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速...为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速率数值仿真结果与实验对比,验证了CFD-DEM耦合方法的可行性。将计算流体动力学(Computational Fluid Dynamics,CFD)和离散元(Discrete Element Method,DEM)仿真结果导入ABAQUS中对叶片结构强度进行了分析,结果表明:叶片所受应力远小于材料的许用应力,最大节点位移满足刚度设计要求。最后对叶片的磨损情况进行了分析。展开更多
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ...The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.展开更多
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o...In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.展开更多
In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the targe...In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the target problems.To address issues that arise in phase space models of plasma problems,we develop a weighted essentially non-oscillatory(WENO)scheme using trigonometric polynomials.In particular,the non-polynomial WENO method is able to achieve improved accuracy near sharp gradients or discontinuities.Moreover,to obtain a high-order of accuracy in not only space but also time,it is proposed to apply a high-order splitting scheme in time.We aim to introduce the entire SL algorithm with high-order splitting in time and high-order WENO reconstruction in space to solve the Vlasov-Poisson system.Some numerical experiments are presented to demonstrate robustness of the proposed method in having a high-order of convergence and in capturing non-smooth solutions.A key observation is that the method can capture phase structure that require twice the resolution with a polynomial based method.In 6D,this would represent a signifcant savings.展开更多
To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this meth...To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been...This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chemically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic properties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicomponent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.展开更多
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)...This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.展开更多
砂土液化是常见的地震灾害,目前应用于研究砂土液化动力特性的室内试验以及模型试验还不能全面反映土体液化全过程。计算流体动力学(computational fluid dynamics,CFD)与离散元法(discrete element method,DEM)耦合模拟方法能够准确地...砂土液化是常见的地震灾害,目前应用于研究砂土液化动力特性的室内试验以及模型试验还不能全面反映土体液化全过程。计算流体动力学(computational fluid dynamics,CFD)与离散元法(discrete element method,DEM)耦合模拟方法能够准确地模拟各类水土耦合问题。通过二次开发的CFD-DEM流固耦合模块实现离散元软件PFC3D与计算流体力学软件OpenFOAM之间的力学信息交互,利用颗粒水下自由沉降验证该方法的可行性。利用PFC3D软件模拟室内循环三轴试验标定出具有真实饱和砂土动力特性的数值砂样。根据已有的参数信息以及耦合模拟方法建立了饱和砂土的场地液化模型。模拟结果表明,离散元法能够复现室内砂土液化试验,标定参数可应用于场地液化模拟;单颗粒沉降速度与理论解一致验证了CFD-DEM耦合方法的准确性;峰值加速度0.25g下不同深度处土体均会发生液化,液化时超孔压比无法达到1,超孔压累计值由浅层往深层递增;液化后土体强度自下而上逐渐恢复,再固结的场地土体结构呈现均匀化发展趋势。展开更多
Nystrm method is a new method for solving electromagnetic scattering problems. This paper gives the detailed description on high-order Nystrm method used for the electric field integral equation of electromagnetic sca...Nystrm method is a new method for solving electromagnetic scattering problems. This paper gives the detailed description on high-order Nystrm method used for the electric field integral equation of electromagnetic scattering problems. The numerical solutions of two examples are correct compared with Method Of Moment(MOM).展开更多
This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept...This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept of equivalent shear stiffness which can meet the requirement of the HSM algorithm.A study is done to theoretically validate the technique by the numerical analysis of two-storey shear building structure,in comparison of the proposed substructure pseudo-dynamic testing algorithm with the central difference method(CDM).Then,a full-scale SPDT model,the three-storey frame-supported reinforced concrete short-limb masonry shear wall structure,is designed and tested to simulate the seismic response of the corresponding six-storey structure and verify the proposed force control HSM technique.Meanwhile,the techniques of both stiffness correction and force control are suggested to control algorithmic error,control error and measurement error.The results indicate that the force control HSM can be used in the full-scale multi-degree-of-freedom(MDOF)substructure pseudo-dynamic testing before descent segment of structure restoring force properties.展开更多
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
文摘In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finite-difference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace methods. Numerical results are given to verify the behavior of high-order compact approximations in combination preconditioned methods for stability, convergence. Also, the accuracy and efficiency of the proposed scheme are considered.
基金supported by the National Natural Science Foundation of China(No.51174236)the National Basic Research Program of China(973 Program)(No.2011CB606306)the Opening Project of State Key Laboratory of Porous Metal Materials(No.PMM-SKL-4-2012)
文摘An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in both time and space directions. The space variable is discretized by a high-order compact (HOC) difference scheme with correction terms added at the irregular points. The time derivative is integrated by a Crank-Nicolson and alternative direction implicit (ADI) scheme. In this case, the time accuracy is just second-order. The Richardson extrapolation method is used to improve the time accuracy to fourth-order. The numerical results confirm the convergence order and the efficiency of the method.
文摘This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.
文摘为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速率数值仿真结果与实验对比,验证了CFD-DEM耦合方法的可行性。将计算流体动力学(Computational Fluid Dynamics,CFD)和离散元(Discrete Element Method,DEM)仿真结果导入ABAQUS中对叶片结构强度进行了分析,结果表明:叶片所受应力远小于材料的许用应力,最大节点位移满足刚度设计要求。最后对叶片的磨损情况进行了分析。
文摘The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.
文摘In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.
基金AFOSR and NSF for their support of this work under grants FA9550-19-1-0281 and FA9550-17-1-0394 and NSF grant DMS 191218。
文摘In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the target problems.To address issues that arise in phase space models of plasma problems,we develop a weighted essentially non-oscillatory(WENO)scheme using trigonometric polynomials.In particular,the non-polynomial WENO method is able to achieve improved accuracy near sharp gradients or discontinuities.Moreover,to obtain a high-order of accuracy in not only space but also time,it is proposed to apply a high-order splitting scheme in time.We aim to introduce the entire SL algorithm with high-order splitting in time and high-order WENO reconstruction in space to solve the Vlasov-Poisson system.Some numerical experiments are presented to demonstrate robustness of the proposed method in having a high-order of convergence and in capturing non-smooth solutions.A key observation is that the method can capture phase structure that require twice the resolution with a polynomial based method.In 6D,this would represent a signifcant savings.
基金funded by the National Natural Science Foundation of China(No.42004056)the Natural Science Foundation of Shangdong Province,China(No.ZR2020QD052)China Postdoctoral Science Foundation(No.2019M652386)。
文摘To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
基金supported by an Early Career Faculty grant from NASA's Space Technology Research Grants Programprovided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center
文摘This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chemically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic properties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicomponent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10871117 and 10571110)
文摘This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
文摘砂土液化是常见的地震灾害,目前应用于研究砂土液化动力特性的室内试验以及模型试验还不能全面反映土体液化全过程。计算流体动力学(computational fluid dynamics,CFD)与离散元法(discrete element method,DEM)耦合模拟方法能够准确地模拟各类水土耦合问题。通过二次开发的CFD-DEM流固耦合模块实现离散元软件PFC3D与计算流体力学软件OpenFOAM之间的力学信息交互,利用颗粒水下自由沉降验证该方法的可行性。利用PFC3D软件模拟室内循环三轴试验标定出具有真实饱和砂土动力特性的数值砂样。根据已有的参数信息以及耦合模拟方法建立了饱和砂土的场地液化模型。模拟结果表明,离散元法能够复现室内砂土液化试验,标定参数可应用于场地液化模拟;单颗粒沉降速度与理论解一致验证了CFD-DEM耦合方法的准确性;峰值加速度0.25g下不同深度处土体均会发生液化,液化时超孔压比无法达到1,超孔压累计值由浅层往深层递增;液化后土体强度自下而上逐渐恢复,再固结的场地土体结构呈现均匀化发展趋势。
基金Supported by the National Natural Science Fbundation of China(No.60371003)
文摘Nystrm method is a new method for solving electromagnetic scattering problems. This paper gives the detailed description on high-order Nystrm method used for the electric field integral equation of electromagnetic scattering problems. The numerical solutions of two examples are correct compared with Method Of Moment(MOM).
基金Sponsored by the National Natural Science Foundation of China(Grant No.50508012)
文摘This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept of equivalent shear stiffness which can meet the requirement of the HSM algorithm.A study is done to theoretically validate the technique by the numerical analysis of two-storey shear building structure,in comparison of the proposed substructure pseudo-dynamic testing algorithm with the central difference method(CDM).Then,a full-scale SPDT model,the three-storey frame-supported reinforced concrete short-limb masonry shear wall structure,is designed and tested to simulate the seismic response of the corresponding six-storey structure and verify the proposed force control HSM technique.Meanwhile,the techniques of both stiffness correction and force control are suggested to control algorithmic error,control error and measurement error.The results indicate that the force control HSM can be used in the full-scale multi-degree-of-freedom(MDOF)substructure pseudo-dynamic testing before descent segment of structure restoring force properties.